
ASM Relational Transducer Security Policies

Leo A. Meyerovich, Joel H.W. Weinberger,
Colin S. Gordon and Shriram Krishnamurthi

Department of Computer Science

Brown University

Providence, Rhode Island 02912

CS-06-12

November 2006

ASM Relational Transducer Security Policies
Leo Meyerovich, Joel Weinberger, Colin Gordon, Shriram Krishnamurthi

Computer Science Department
Brown University

{lmeyerov, joel, colin, sk}@cs.brown.edu

We present a model of the security policy for the Web-based Continue [10] conference man-
agement tool. The policy model and properties are written as ASM Relational Transducers [14],
which we extend with a module system in order to simplify the handling of conflicting updates.
We assume prior familiarity with the security policy concerns surrounding Continue. First, we re-
view the ASM Relational Transducer modeling and property language. Then we describe the basic
structure of our policy implementation and demonstrate the ability to model useful properties in
the original core ASM [7] language. We exploring the use of the unmodified modeling language in
a security policy context and describe typical ASM Relational Transducer complexity concerns [14]
and how these minimally impact our implementation. Next, we discuss difficulties encountered in
representing our policy and properties in the standard ASM language, including our implementa-
tion in the appendices. Following the description of adapting ASMs for use in security modeling,
we introduce policy modules and a composition operator to overcome the difficulty of programming
in the original language known as the consistent update problem. Finally, we describe a reduction
from our extended language to the original language, and prove it satisfies our required correctness
property.

1 Background: ASM Relational Transducer Model

ASM Relational Transducers [14] are implementations of relational transducers using Abstract
State Machines (formerly known as Evolving and Dynamic Algebras), introduced by Gottlob [6],
advanced by Gurevich [7] and extended by Spielmann [13, 12].

Relational transducers have been shown to be useful in encoding and verifying transactional
business models [1]. Such transducers can be written as ASMs to alleviate some limitations of the
earlier SPOCUS relational transducers [1] while maintaining PSPACE complexity [14].

An ASM can be viewed as an abstraction over nondeterministic finite state machines in which
every state is labeled with atomic propositions that are true, also known as Kripke structures. In-
stead of every state being labeled by atomic propositions, every state is a model in which sentences
in first order logic are either true or false. A transition function specifies how to generate a new
state for the model based on the current state and a given set of input relations (as opposed to
input symbols). Instead of specifying the transition function, which can be tedious, the transition
function is extracted from a program consisting of model update rules that dictate how the values
of relations and functions change during one step of the program. For example, the program to
transition from a state in which a usera is a Reviewer to a state in which usera is an Admin can
be written as a single rule as follows:

IF ChangeJobToAdmin(usera) AND Reviewer(usera) THEN
NOT Reviewer(usera)
Admin(usera)

Note that usera is implicitly universally quantified in the guard of the conditional on the first
line.

A program is a set of rules. The program can be repeatedly run, with the new start state being
the the result of transitioning from the previous start state on some input1.

At any given state, there is a danger of rules specifying conflicting updates. For example, it
is possible that a user is added and deleted in the same state. While the core semantics of ASMs
define such a conflicting update, which we call a no-op, to not occur and thus leave the relevent
relation unmodified from the previous state, in practice the occurence of such a conflict is defined
as a failed run. Even when following the core semantics, a no-op can cause undesirable behavior in
the modelled system due to the lack of atomicity for sets of update rules.

Due to the varying uses and properties of relations, ASM relations are partitioned into the
following classes:

• Input

• Output

• Memory

• Database

1.1 Input

Input relations drive our transitions. These occur in the guards of conditionals as we generally act
upon received input. We define the names of our input relations at the beginning of our policy,
just like any other relation in our model. For example:

1It should be noted that the core ASM program language includes another construct, choose : φ, Π, which is

nondeterministic choice, and is not used for complexity reasons. We do not address nor use this construct as

nondeterminism is an undesirable property in most security policies.

Input:
ChangeReviewerToAdmin(x)

Memory:
Admin(a)

UpdateRules : IF ChangeReviewerToAdmin(usera) THEN
Admin(usera)

A subtlety of the model is that all input relations and the possibility of multiple values must be
considered. In the above example, ChangeReviewerToAdmin(usera) may hold for multiple users.
This would be reasonable in the case that the user is using a form in which he/she may use a
checkbox to specify that multiple reviewers should be converted to administrators at the same
time. Similarly, care must be taken in circumstances in which multiple relations may have values
that are intertwined, such as when ChangeJobToAdmin(usera) and ChangeJobToReviewer(usera)
both hold for the same user. This will be a large motivation for Section 7 where we discuss policy
composition.

1.2 Output

We may want to report the status of our model during certain transitions. Output relations can-
not occur in the guard of a conditional as they are the result of our transition. They are never
negated, meaning values are never removed from them, which can be explained by viewing them as
a result. Thus, there are no output relation values until a rule explictly asserts the existance of one.

IF RequestAccount(usera) THEN
notifySuccess(usera)

1.3 Memory

Memory represents mutable state. A program can reference the current state and use it to deter-
mine the next state. Relations in memory start out empty, so initialization concerns arise that will
be addressed in section 5.

IF ChangeJobToAdmin(usera) AND Reviewer(usera) THEN
NOTReviewer(usera)
Admin(usera)

1.4 Database

Database relations are also known as Static relations in ASM literature. In our model, some things
are always true and thus some relations should never change. Relations in the database only occur

in rule guards as they are immutable. These relations generally do not start empty, as that would
cause them to remain empty permanently.

IF CurrentPhase = InitialPhase AND AdvancePhase THEN
CurrentPhase = SecondPhase

1.5 Log

We want to verify properties of sequences of states achievable by program transitions. A common
task may be to check that there is a valid sequence of transitions that would produce a certain
sequence of input and output relations. Relations in the Log class are therefore also either in Input
or Output. We are not exclusively interested in relations in the Log, nor limit property reasoning
to them, but they are a useful abstraction.

Given the partitioning of relations into Input, Output, Memory, and Database, we must be
more specific about how we author rules for updating the state through transitions. Only Output
and Memory relations can be modified, and only the Output relations may recieve positive (ad-
ditive) updates only. Spielmann therefore separates update rules into separate Output rules and
Memory rule sets, though we find the majority of our Output and Memory rules share the same
guards and thus it is counterproductive keeping the rules separate in terms of code length. Our
policies combine the two for the sake of brevity. Formal treatise can be found in related work [13, 1].

2 Background: ASM Relational Transducer Property Language

We are interested in verifying properties of possible sequences of states. Classes of verification
problems exist that are concerned with validity and reachability of Log relations [14], but we may
also be interested in the properties of other relations that occur in states along valid sequences,
such as whether it is ever possible to have no administrators in memory. A temporal logic would
be a natural choice, and our description of states motivates the use of first order logic for state
formulas. Spielmann uses a first order temporal logic, FTL, allowing first order state formulas and
path formulas that are of the form of either Xa or aUb, but excluding quantification over paths.

The property language consists of a full first order logic on states and a limited temporal logic
on paths. We lack for-all and there-exists over paths, which are not necessary because for any given
state, the only path we are concerned with is that resulting from the running the update program
with the current input. We can express properties about the entirety of the path we care about,
and can express any first-order property within a given state through normal first order logic. The
latter includes checking for the presence of a certain tuple in a relation, or quantifying over the
members of a relation within a given state. Thus we can express most properties relevant to our
policy in our property language. For example, we can express the property that authors can only

submit papers during the Submission phase:

G(FORALL paper, user: NOT CurrentPhase = Submission →
((Papers(user, paper)→ X Papers(user, paper))
∧ (NOT Papers(user, paper)→ X NOT Papers(user, paper))))

Generally, the expressiveness of state formulae and the malleability of memory are useful when
encoding intricate properties. For example, we can encode any need to reference all possible inputs
by simply referencing contents of the memory.

Due to the nature of ASMs, some properties which make sense to check and verify in other
models written in other langauges do not need to be checked for ASMs. Specifically, any property
regarding a given operation (e.g. changing a user’s password) leaving the rest of the state un-
changed makes no sense because multiple operations can occur simultaneously in our use of ASMs.
Extraneous checks such as these occured in an alternative Continue modeling attempt utilizing
Alloy.

3 Policy Implementation Strategy

Our ability to describe states using first order logic made our translation from our Alloy model
relatively intuitive. The Continue policy is a rich example of a security policy, characterizing
common requirements for expressibility. First, we briefly discuss our superficial choice to deviate
from the seperation of Memory and Output update rules. Next, we examine our representation of
conference phases to show how to describe general transitions and paper phases to show initialization
techniques. We also present how to allow the changing of the jobs of users, capturing the basic
technique of adding and removing from relations. Allowing the addition and removal of reviews,
conflicts, and other tasks common to the Continue policy can be similarly represented so we leave
the rest to our implementation in the appendices.

3.1 Merging memory, output rules

While writing our model, we deviated from the standard ASM program notation. The standard
notation separates the memory rules from the output rules, yet there is no inherent reason for
this distinction; it seems to be done to provide a syntax close to that found in related relational
transducer literature.

However, this is a very inconvenient notation as it naturally leads to much repetition of general
structure and specifically the usage of guards. In a rule that both records a decision in memory and
outputs a decision when given an input relation PaperDecision for a paper, the written description

would require repeating the input guard twice:

Memory rules:

...

IF AddConflict(curuser, user, paper) THEN //input

IF Admin(curuser) OR (curuser = user) THEN //memory

Conflicts(user,paper) //memory

...

Output rules:

...

IF AddConflict(curuser, user, paper) THEN //input

IF Admin(curuser) OR (curuser = user) THEN //memory

ConflictAdded(user, paper) //output

ELSE

ActionFailed(curuser) //output

...

Thus, in our model, because no relation is both a memory relation and an output relation, we
combine memory rules and output rules into one set of rules, modifying memory and generating
output at the same time:

Memory and Output rules:

...

IF AddConflict(curuser, user, paper) THEN //input

IF Admin(curuser) OR (curuser = user) THEN //memory

Conflicts(user,paper) //memory

ConflictAdded(user, paper) //output

ELSE

ActionFailed(curuser) //output

...

Policy composition, dicussed in section 7, is not meaningfully impacted by this seperation.

3.2 Conference Phases

A large portion of Continue depends on advancement of phases in a conference. Certain actions
are permitted in some phases but not in others. We demonstrate how we perform and authorize

phase transitions:

Memory and output rules:

...

IF AdvancePhase(curuser) AND Admin(curuser) THEN //input, memory

IF CurrentPhase = Initialization THEN //memory,db

CurrentPhase = PreSubmission //memory.db

PhaseAdvanced(PreSubmission) //output,db

ELSE IF CurrentPhase = PreSubmission THEN //memory,db

CurrentPhase = Submission //memory,db

PhaseAdvanced(Submission) //output,db

...

We check to see whether a user wants to advance the conference phase, and that the user is an
administrator and, if so, update the CurrentPhase memory relation and generate the appropriate
output relation. CurrentPhase is a nullary function so it can only have one value, namely the phase
we transition to. A subtlety arises in guaranteeing that phase values are distinct, which we discuss
in section 5.

3.3 Paper phases

Memory relations start empty and database relations are initialized with values that never change,
yet memory relations sometimes should be initialized to values not dependent upon input. Our
approach is to store initialization values in database relations, and when needing to initialize a
memory relation, we just use the appropriate database relation.

Example:

IF AdvancePhase(curuser) AND Admin(curuser) THEN //input, memory

...

ELSE IF CurrentPhase = Bidding THEN //memory,db

CurrentPhase = Assignment //memory,db

PhaseAdvanced(Assignment) //output,db

forall u, p | Papers(u, p): //memory

PaperPhase(p, Passignment) //memory,db

In the above example, we initialize paper phases to the assignment phase as soon as we move
from the conference bidding phase to the conference paper assignment phase. Initialization of the
entire system, for example Continue’s conference phase, requires similar initialization. See section
5 for more.

3.4 Changing jobs

A common action is to add an element to a relation or remove an element from a relation, such as
changing a user’s job. An example of this was shown in the introduction.

3.5 Sequential Programs

For a given state and its input relations, the next state and resultant output relations are deter-
ministic.2 However, concurrency is possible. For example, when describing transitions, we actually
allow multiple users to perform actions in parallel. This is achieved by specifying the current user
attempting to perform an action as a member of every Input relation:

IF EditConferenceInfo (curuser, conference-info) THEN //input

IF Admin (curuser) THEN //memory

ConferenceInfo = conference-info //memory

InfoChanged // output

ELSE

ActionFailed(curuser) // output

IF ModifyUserInfo (curuser, user, name) THEN //input

IF Admin (curuser) OR (curuser = user) THEN //memory

(forall names : NOT User (user, names)) //memory

User (user, name) //memory

UserModified(user) //output

ELSE

ActionFailed(curuser) //output

These two update rules (each of the outer IF blocks) are applied independently at the top level,
so the pair of rules allows different users to modify user information and conference information at
the same time. If a conflicting update occurs, such as two different users updating ConferenceInfo
to two different values in the same step, neither update occurs, which we call a no-op.

Since separate rules for the same relation have their update decisions combined, if a conflict of
these decisions creates an inconsistent state for the model, we must address the possibility explic-
itly. Mutable relations in our policy often include a user parameter, as seen in the second rule, so
we can typically avoid instances of multiple users making conflicting updates as the updates are
parameterized by the user. We can write a precondition that throws out many multiple actions
by the same user, effectively making input relations nullary functions parameterized by the user

2This results from the omission of the choose construct as mentioned earlier.

and preventing many conflicts from the same user, such as trying to change one’s password to two
different values in the same step.

Embracing parallelism is better than explicitly specifying when we do want to allow updating
of relations to occur simultaneously because parallelism is arguably the more general case for a web
application. As discussed, this default assumption of parallelism will generally not cause problems
because most distinct rules do not affect the same relations and most rules that can be performed
simultaneously by different users do not affect the same relations in conflicting ways and, more
importantly, captures our desired intent; servers should support concurrent use. However, this
is not a guarantee that conflicting updates will not occur. Care must still be taken in this area
and is the motivation for our module composition operator, which gives control over the scope of
conflicting updates.

The above shows that we can naturally express fundamental notions of the Continue policy.

4 Complexity Invariants

Spielmann presents complexity results showing that verifying properties of programs written in
the formalism he describes are decidable in PSPACE [13, 14]. To achieve this result, Spielmann
introduces the following two constraints:

4.1 The maximal arity of relations is bounded

This is a reasonable assumption, as the maximal arity in our policy was 3. We see no reason to
have unbounded arity.

4.2 The maximal input flow is bounded: for any input relation, the number of

tuples in that relation is bounded

This again is a reasonable assumption. Continue runs on a web server so we can justify bounding
the input an individual client can produce and bounding the number of total clients. An individual
client will be making requests from web pages, and we generally do not see unbounded input forms
on-line, so bounding the number of requests per client during one transition is reasonable. Finally,
as Continue runs on a physical server, it can only serve a fixed number of concurrent requests before
it has to start queuing. Given these physical realities, assuming the maximal input flow is bounded
is acceptable.

We see that Spielmann’s assumptions, which are sufficient to achieve PSPACE complexity
results, are reasonable in the case of Continue.

5 Cons of Modeling Continue as an ASM Relational Transducer

The specification and verification languages of ASM relational transducers present a number of
difficulties. The language for specification tends to lack some desired expressiveness, forcing us
to write facts and properties in a counterintuitive manner. Among the more prominent issues are
the inability to separate the program from the access control policy, difficulty with initializing the
state of the transducer, and difficulty in resolving conflicts among rule interpretations (i.e. the
appearance of no-ops).

Perhaps the largest issue is the inability to separate the access control policy from the actual
program rules. For example, when writing the rules for adding a conflict for a particular user and
paper, it is necessary to check whether the user is a reviewer or an administrator in the rule itself.
This mixes the business logic level allowance of adding conflicts with the access control policy re-
striction of who may add a conflict. We also see this problem in other proposed models: we have
an underlying model of business logic, and want to express authorization rules further restricting
transitions of the business model, yet are forced to describe both together, conflating concepts.

A possible approach would be to separately specify a policy and provide a transformation opera-
tor to make the ASM conform to the policy. Recent related work by Pucella [11] explores modifying
an FSM, focusing on what paths would change if the policy were to change mid-execution or have
a schedule of changes.

Forcing the policy to be combined with the program is a poor formalization strategy. Besides
making the rules of the program much harder to read, this is confusing two fundamentally different
tasks. If a certain property fails verification, it is extremely beneficial to know whether the failure
was due to a mistake in the rules of our program or in the access policy. Thus, the failure to cleanly
separate the two is a weakness of our model. On the other hand, there are very few systems that
fully, if at all, separate policy from program. Given this common practice, the ASM Relational
Transducer model is no worse than the rest.

Initialization of state in a transducer is not obvious nor is establishing invariants. The general
problem is encountered when we want to verify the continual existence of at least one administra-
tor. While it is straightforward to maintain the invariant by never permitting the removal of an
administrator when there is only one administrator, it is not directly apparent how to establish
that, from the beginning, there must be at least one administrator. In order to create initialization
invariants, it is sufficient to place an extra “AND” clause on every rule stating “AND ModelIsIni-
tialized” in our policy. This is implicitly applied to all rules in our model. Initialization can be
dealt with easily by making the ASM finitely initialized, so all memory relations begin empty [13].

This method of initialization requires wrapping a large IF-THEN clause around the main pro-
gram. If ModelIsInitialized is empty, then initialize memory. If ModelIsInitialized is non-empty,
then the main program runs. The body of the rule for the former case initializes memory as needed

and, finally, sets the ModelIsInitialized relation. Thus, all the other memory and output rules may
run only after the first transition in which the memory is initialized. While this at first seems like
a strange side effect of using ASM relational transducers, it is actually natural:

In almost any system that can be modeled, there is some conceptual point where the system is
set up before beginning the first run of the system. For example, when starting a computer, the
BIOS or firmware initializes peripherals before allowing the operating system to run. When start-
ing a desktop application, the operating system maps the executable into a new process’s address
space before allowing the program to execute. In any case, before this type of event, all other input
to the system is invalid, ineffectual, or has unexpected consequences. By triggering or waiting for
this event, the system is able to initialize its own state, which had previously been empty. Once it
is ready, the program starts accepting a wider variety of user input. Our IF-THEN wrapper maps
well to this initialization step. The body of the THEN clause will not execute more than once, but
initializes several memory relations of the transducer to prepare it for future runs.

A related issue is that an initialized state must satisfy certain invariants. In an Alloy program,
some invariants are facts which are enforced while generating the model, not necessarily properties
verified by the model after generation [9]. In ASMs most initialization values come from constant
Database relations, yet these may map to the same points even when that is exactly what we do
not want. Specifically, if we describe our phases as constants in the Database relation set, how can
we guarantee that the constants do not have the same value?

There is no way to specify initialization invariants in the database within the model, though
we can check them in our properties. Thus we simply assure that such constants are not equal
by effectively stopping the run of the transducer if such invalid information is in the database. In
the initialization rules, we create guards checking that the constants are not equal. If they are
equal, the guard fails, and thus the remainder of the program nested inside the conditional is not
run. Despite preventing invalid models from transitioning, this approach is not satisfying as it still
allows invalid models to exist in the space of models we will verify our properties against. Further
vigor must be used to ensure that we consistently only consider the intended subset of possible
models.

The final major problem is the counter-intuitive semantics of no-ops. It should be noted that we
see merits of not defining the occurence of no-ops to be program failures, but determining whether
they impact a policy fragment being written is extremely tedious. For example, if two inputs,
applied independently, cause conflicting changes to memory regarding the review of paper, a no-op
would occur if both inputs were presented together, and thus the relevant part of the state would
remain unchanged. However, determining that a no-op occurred and changing the output and
memory based on a no-op occurring is usually difficult. It is possible to detect input that causes
no-ops, but these cases must be explicitly dealt with, requiring the construction of large guards.

Language support to detect no-ops either within rule specification or property specification is

invaluable. We can verify properties to track down no-ops, but this approach is not simple. For
example, no-ops only occur for memory, not for output. If every memory update coincides with an
output update, we must check that output updates imply memory updates. Thus, we can detect
that a no-op occurs, but it is difficult to tell why it occurred or control the occurrence of no-ops in
an easy manner.

No-ops provide a semantically simple way to resolve conflicts by default among relations: do
nothing. However, their occurrence made authoring and modifying output and memory update
rules extremely difficult. While writing the rules in the standard ASM language, the possibility
of a no-op was always on the forefront of our mind. We both tried to avoid them and, when we
recognized their possibility, had to modify our rules to cover them. This is a fundamental problem,
despite the power of no-ops.

As a brief note, we emphasize that the ASM language has an inconsistent use of quantifica-
tion. Namely, in the guard of a rule, no quantification is needed; the seemingly free variables are
actually implicitly universally quantified. However, in the program after the guard, it is necessary
to quantify free variables. This would often lead to confusion when writing rules over what was
bound and what was not bound as requiring this dual-syntax for binding variables is syntactically
inconsistent. In any case, we cannot determine any real significance to this other than a minor
syntactic inconvenience when writing the rules.

6 Pros of Modeling Continue as an ASM Relational Transducer

There are many properties of ASM transducers that are useful for modeling Continue: automatic
concurrency, straightforward semantics of the handling of contradictory decisions, ease of transition
due to the use of update sets for the state transitions, and expressive power.

Because the number of relations serving as input to each state can be greater than one, each
state transition can encompass multiple inputs. Thus, the system models concurrent requests well.
This does open the door to contradictory input, but because contradictory updates are ignored
(no-ops), the system will be in a predictable state if such a thing occurs - neither action succeeds.

The main issue with no-ops is detecting that a contradiction occurred when specifying rules,
which is not intuitive in our policy; the state rules must simply be modified manually to check
for the contradictory input explicitly, which has the potential to miss some possible conflicts. For
example, by checking if there are two individually valid requests to change the same user’s pass-
word to two different things, the only checks needed are to see whether the user in question for two
password-change requests is the same, that the old-password is the same, and that the requested
new passwords are different. An approach to verify the lack of no-ops is to check that whenever
we have an output, memory is properly updated, as generally, every memory update is associated
with an output. If an update of an output relation occurs but the corresponding memory update
does not, we clearly have a no-op. Another issue with this approach is that it requires that one

portion of a policy be written in a way which creates dependency on the way another portion of
the model is written. This is not insurmountable, but is undesirable.

As any relations not explicitly modified remain the same after a transition, the memory rules
can be much shorter than in other specification languages, such as Alloy, where anything which
does not change must have some statement explicitly maintaining consistency between states. This
allows multiple changes at once.

Finally, and perhaps most importantly, despite any awkwardness or shortcomings of using ASM
relational transducers to model Continue, they are more than expressive enough. Writing slightly
odd rules is a reasonable price to pay for a language powerful enough to express our system without
difficult encodings. Overall, we found that ASM relational transducers were more than sufficient
to express Continue while remaining fairly intuitive.

7 Composition of ASM Modules and ASM No-op Reporting

Sections 3 and 5 present intricacies of policy authoring using the basic ASM Relational Transducer
language. When writing update rules, it is unclear whether all of the updates within a set of
rules occur without another conflicting update occuring elsewhere in the policy. We describe how
to partition a policy into modules that can be individually reasoned about about and can be
composed.

Given a set of update rule modules, we describe a composition operator that satisfies certain
properties relating to the atomicity of decisions made by a module and about the origin of any
decision made. To do so, we define modules and a translation from ASM relational transducers
extended with modules to the original ASM relational transducer language. Then, we formalize
the notion of safety our composition operator must satisfy and show the composition algorithm is
correct with respect to the composition property. Finally, we describe an alternative translation
from the module language to the original relational transducer language that reports any no-ops
that occur.

The properties the composition must satisfy appear to be similar to those describing concurrent
transactions in that either all of the applicable updates from a module occur or none of them
occur, reminiscent of atomicity properties. We suggest two properties our composition operator
must satisfy:

1. No extra decisions (including no-ops): A decision on a relation in the composition occurs only
if that same decision is due to one or several modules being composed.

2. Module atomicity: To say a decision in the composition is due to one (or several) of the
modules being composed, these modules being composed cannot make decisions that conflict
with decisions made by other modules. Therefore, to say one applicable update in a module
occurs, all of the applicable updates in the module must occur.

We combine these two properties into one stronger formal property stating that a decision
occurs in the composition modules if and only if it also occurs as a decision in one of the modules
such that all the decisions in that module do not conflict with those of any other modules being
composed. A key result of this property is that any no-op that occurs is intentional and therefore
not introduced by the composition operator.

In section 7.2 we formally describe the properties a composition operator must specify, in section
7.4 we write an algorithm to perform the composition of modules, and finally in section 8 we prove
our algorithm is correct with respect to our desired composition properties.

Finally, to aid understanding of runs of a program written in our ASMRT language extended
with modules, we describe an alternative translation to the original ASM relational transducer
language that creates an additional outputs detailing whatever no-ops occur in a transition. The
composition property shows that these no-ops are intentional: they must have occurred due to
updates within the body of some non-conflicting module. There may be value in also detailing
from which paths of modules a no-op derives, but we do not pursue this issue. Our intuition is that
a technique similar to that used in reporting the original no-ops can be used.

7.1 Definition of a Module

We define a module in terms of ASM update rules. We assume an ASM program can be processed
into a normal form consisting of a sequence of if-then statements.

Module m : a module m is a finite set of tuples, each consisting of a module guard and an
update rule:

m ≡ {(mgk, uk)}

The module guard mgk is any sentence (in which all variables are bound) that can be defined within
the test condition of an ASM IF-THEN update rule. Note that we do not annotate a variable with
its module identifier if it is apparent from context.

An update rule uk is a tuple of the sign sk of the relation to update (positive or negative), the
name of the relation rk to update, the applicability guard ugk for the update rule, the parameters
of the update k~p with inline universally quantified variables replaced with a unique variable ub, and
the set of indices UBk of the inline universally bound parameters replaced with ub:

uk ≡ (sk, rk, ugk, k~p, UBk)

For example, consider the program consisting of the update rule uk to remove reviewer r’s
conflicts on all papers:

∀p.¬Conflict(r, p)

If we turn this into a module, we have:

u1 = (¬, Conflict, true, (r, ub), {2}) (1)

m = (true, u1) (2)

While it may be possible to combine update and module guards, keeping them distinct makes
sense: all of the variables of a relation being update are bound within the update guard, and when
composing modules, the update rules do not change.

The ASM program πi ≡ JmiK representingmodule mi :
Intuitively, when a program consists of only module mi, update ui,k is applied whenever mgi,k ∧

ugi,k is satisfied. Thus, we define JmiK in terms of ASM update rules as follows, knowing UBi,k is
finite and totally ordered by o:

JmiK ≡

IF mgi,1 ∧ ugi,1 THEN
∀ubi,1, · · · ,∀ubi,|UBi,1|si,1ri,1(f(i,1~p, UBi,1))
...

IF mgi,n ∧ ugi,n THEN
∀ubi,n, · · · ,∀ubi,|UBi,n|si,nri,n(f(i,n~p, UBi,n))

where n = |mi|, and f(i,k~p, UBi,k) = i,k~q such that

i,k~q =

{

i,k~pj ifj /∈ UBi,k

ubi,o(j) ifj ∈ UBi,k

Note that, as |UBi,k| and |mi| are bounded, this translation terminates. Additionaly, for brevity,
we will write f(~p, UB) as ~q in future sections.

7.2 Desired Properties of Module Composition

We describe the main property a composition operator ⊗ : 2{mi} → mj must satisfy:
Given input module set {mi}, the composed module mj = ⊗({mi}) must translate into an

ASM the makes decisions as follows: an update decision for some relation in the composed module,
whether it be addition to the relation, removal from the relation, a conflict leading to no operation
on the relation for a given tuple, or no applicable operation, occurs if and only if the same decision
is made by one of the modules being composed when considered independently, and none of the
decisions from other modules being composed, when also considered independently, conflict with
any decisions of the first module being considered independently.

Formally:

∀r∀~q∀d ∈ {+,−, NOOP} .

decision(r, ~q,mj) = d ⇐⇒
∃ml ∈ {mi}.decision(r, ~q,ml) = d
∧ ∀r′, ~q′.¬∃mk ∈ {mi}.

conflict(decision(r′, ~q′,ml), decision(rk , ~q′,mk))

∀r∀~q .

decision(r, ~q,mj) = NA ⇐⇒
∀ml ∈ {mi}.decision(r, ~q,ml) 6= NA
→ ∃r′, ~q′.∃mk ∈ mi.

conflict(decision(r′, ~q′,ml), decision(r′, ~q′,mk))

Where:

decision(r, ~q,mj) =

NA ∀(mgi, ui) ∈ mj .(mgi ∧ ugi → r 6= ri ∨ ~qi 6= ~q.)

+
∃(mgi, ui).(r = ri ∧ mgi ∧ ugi ∧ ~q = ~qi ∧ si = +)
∧ ∀(mgi, ui).(r = ri ∧ mgi ∧ ugi ∧ ~q = ~qi)→ si = +

−
∃(mgi, ui) ∈ mj.(r = ri ∧ mgi ∧ ugi ∧ ~q = ~qi ∧ si = −)
∧ ∀(mgi, ui).(r = ri ∧ mgi ∧ ugi ∧ ~q = ~qi)→ si = −

NOOP
∃(mgi, ui), (mgf , uf) ∈ mj .r = ri = rf ∧ mgi ∧ ugi ∧
mgj ∧ ugf ∧ ~q = ~qi = ~qf ∧ si 6= sf

conflict(d, d′) =

{

false d = d′ ∨ d = NA ∨ d′ = NA
true else

7.3 No-op Reporting

The occurrence of no-ops during the transitions of an ASM can confuse the understanding of a pol-
icy because some updates written may not occur in the final transitioned state. Below, we describe
an alternative translation from a module into an ASM, creating a new no-op relation rNOOP,i for
every regular output relation ri and adding the additional output of which relations’ updates no-op
during a transition:

No-op Reporting:

JmKnreport ≡

IF mg1 ∧ ug1 THEN
∀ub1, · · · ,∀ub|UB1| s1r1(f(1~p, UB1))

IF (mgs,1,1 ∧ ugs,1,1 ∧ ~p1 = ~ps,1,1)∨
· · ·

∨ (mgs,1,|similar(r1,m)| ∧ ugs,1,|similar(r1,m)| ∧ ~p1 = ~ps,1,|similar(r1,m)|)

THEN
∀ub1, · · · ,∀ub|UB1| s1rNOOP,1(f(1~p, UB1))

...
IF mgn ∧ ugn THEN
∀ubn, · · · ,∀ub|UBn| snrn(f(n~p, UBn))

IF (mgs,n,1 ∧ ugs,n,1 ∧ ~pn = ~ps,n,1)∨
· · ·

∨ (mgs,n,|similar(rn,m)| ∧ ugs,n,|similar(rn,m)| ∧ ~pn = ~ps,n,|similar(rn,m)|)

THEN
∀ubn, · · · ,∀ub|UBn| snrNOOP,n(f(n~p, UBn))

7.4 Formal Algorithm

INPUT: {mi}
result← ∅

For each r ∈Memory ∪Output:
function getPrime (rk, {mi}) =

∨

∧

∨

(

(mgk ,uk)∈{mi}:
rk=r,
sk=+

)

mgk ∧ ugk ∧ ~q1 = ~qk

∧

(mgk ,uk)∈{mi}:
r=rk,
s=−

ff

¬(mgk ∧ ugk ∧ ~q1 = ~qk)

∧

∨

(

(mgk ,uk)∈{mi}:
rk=r,
sk=−

)

mgk ∧ ugk ∧ ~q1 = ~qk

∧

(mgk ,uk)∈{mi}:
r=rk,
s=+

ff

¬(mgk ∧ ugk ∧ ~q1 = ~qk)

(

∧

n

(mgk ,uk)∈{mi}:
r=rk

o

¬(mgk ∧ ugk ∧ ~q1 = ~qk)
)

∨

8

<

:

(mgk,uk):
(mgk ,uk)∈(ml∈{mi}),

r=rk,
sk=+

9

=

;

mgk ∧ ugk ∧ ~q1 = ~qk

∧

∨

8

<

:

(mgi,ui):
(mgi,ui)∈ml,

r=rl,
sl=−

9

=

;

mgl ∧ ugl ∧ ~q1 = ~ql

∧
∧

{ml∈{mi}}

∨

8

<

:

(mgk ,uk):
(mgk,uk)∈ml,

rk=r,
sk=+

9

=

;

mgk ∧ ugk ∧ ~q1 = ~qk

⇔

∨

8

<

:

(mgi,ui):
(mgi,ui)∈ml,

ri=r,
si=−

9

=

;

mgi ∧ ugi ∧ ~q1 = ~qi

(1) copy = {mi}
(2) FOR EACH ml ∈ copy
(3) FOR EACH (mgk, uk) ∈ ml

(4) FOR EACH (mgx, ux) ∈ ml

(5) mgx ← getPrime(rk, {mi}) ∧mgx

(6) FOR EACH (mgk, uk) ∈ ml

(7) result← result ∪ {(mgk, uk)}

(8) return result

Consider a set of modules composed into one new module under our composition operator.
During a transition, an update rule from one of the modules fires only if it comes from a module
that does not have any update decisions that conflict with update decisions from other modules.
Thus, if the decision of a module on any relation conflicts with that of any other module, none of
the updates in the first module should fire (nor any in the second). Thus, we define a function that
first detects, for any given relation, whether any modules conflict on its decision for that transition.
Then, for any module that can make an update decision for that relation, we add to the guards
of all update rules in that module a check for a potential conflict on that relation. The resultant
guards are increased in length by a polynomial amount, so the final policy is still in O(PSPACE).

8 Proof of Algorithm Correctness

We prove the module composition algorithm of section 7.4 is correct with respect to the property
stated in section 7.2.

• Lemma 1: Every update rule in a composition comes from an update rule in some module
being composed, with the module guard having an additional formula mg′ appended to the
original module guard by conjunction.
Formally, both:

1. ∀mj = ⊗({mi}),∀(mgk′′, uk) ∈ mj ,∃mgk′ ∧mgk = mgk′′∃ml ∈ {mi} . (mgk, uk) ∈ ml

Proof:

(a) There is no instruction that adds or removes tuples to the set copy after it is initial-
ized from the unaltered {mi}. The only modifications to set copy modify module
guards, which occurs on line 5. Thus, any uk in any tuple in the set copy can be
found in the original input set.

(b) At any step of execution of the algorithm, any module guard of any update rule in
any reachable module in copy can be written as the conjunction of some formula
with the original module guard of some update rule from the original input set,
{mi}:

i. Inductive Assumption: Prior to any instruction, for any tuple (mgk′′, uk′′) ∈
ml ∈ copy,∃mgk′ . mgk′′ = mgk′ ∧mgk for some tuple (mgk′ ∧mgk, uk) ∈ ml

for some ml in the original input.

ii. Base Case: Prior to any instruction, every tuple (mgk, uk) ∈ ml ∈ copy can be
found in the original input set {mi} because the set copy is a duplicate of the
input set, and can be rewritten as (true ∧mgk, uk). Therefore mgk′ = true.

iii. Inductive Step: The set copy is only mutated at one line after duplication. The
left hand side of the mutation is mgk′′. The left side of the conjuction is mgα.

By the inductive assumption, the right side of the conjuction can be written as
mgβ ∧mgk. Let mgk′ = mgα ∧mgβ. Let mgk′ = mgα ∧mgβ. uk is not modified
therefore the inductive assumption is true.

(c) Our result set starts as an empty set, thus satisfying the property. The only mod-
ifications to the result set occur on line 7, which adds elements of a module of a
modified set, copy. Any modification of the result set yields a set satisfying the
property because by (b) all the elements from a modified set, copy, satisfy the prop-
erty.

2. ∀mj = ⊗({mi}),∀ml ∈ {mi}, (mgk, uk) ∈ ml, ∃mgk′ . (mgk ∧mgk′, uk) ∈ mj

(a) Fix some update rule (mgk, uk) ∈ ml ∈ {mi}. By 1.(b), this update rule will always
be in the input set, {mi}, in some modified form satisfying the property.

(b) As any modified set, copy contains a form of the update rule that satisfies the
property, and lines 2, 3, and 6 iterate over the entire modified set, copy, the update
rule must be in the outputted result set.

• Lemma 2: All formulas extending module guards (the mg′) during composition are the same
for a given module:

∀mj = ⊗({mi}),ml ∈ {mi},∀(mga,l, ua,l), (mgb,l, ub,l) ∈ ml . mga,l′ = mgb,l′

1. Inductive Assumption: Before every iteration of the loop on line 4 ((mgk, uk) ∈ ml), the
appended guard of every module guard in the corresponding module is the same.

2. Base Case: Same base case as Lemma 1, part 1.b.ii (implicitly append true)

3. Inductive Step: Each module guard is modified only by appending getPrime(rk, {mi}),
line 5. This is done for every rule in a given module. Because getPrime is a function
of rk and {mi}, neither of which is ever modified in the algorithm, the appended guards
will all be the same.

• Lemma 3: A module conflict makes the mg’ appended to the original mg by the algorithm
false:

∀mj = ⊗({mi}) . ∀ml ∈ {mi},∀r, ~q
∃mk ∈ {mi} . conflict(decision(r, ~q,ml), decision(r, ~q,mk))
⇒
∀(mga, ua) ∈ ml ∪mk . ¬mga′

Without loss of generality, consider two cases such that conflict(d, d′):

1. Case d = +, d′ = −:
∃mk ∈ {mi}, r, ~q . decision(ml, r, ~q) = + ∧ decision(mk, r, ~q) = −
Therefore, the four clauses of getPrime() are false for r.

For each update rule u in ml, mgu′ = (...∧ getPrime(r, {mi})∧ ...∧mgu) and thus mgu

is false for all u ∈ ml by Lemma 1.

2. Case d = +, d′ = NOOP :
∃mk ∈ {mi}, r, ~q . decision(ml, r, ~q) = + ∧ decision(mk, r, ~q) = NOOP
Therefore, the four clauses of getPrime() are false for r.
For each update rule u in ml, mgu′ = (...∧ getPrime(r, {mi})∧ ...∧mgu) and thus mgu

is false for all u ∈ ml by Lemma 1.

The remaining cases can be proved by communtivity of boolean logic and α renaming.

• Lemma 4: ∀ml,mk ∈ {mi},∀r, ~q,¬∃conflict(decision(r, ~q,ml), decision(r, ~q,mk))⇒ ∀n mgn,l′
Without loss of generality, consider two cases such that ¬conflict(d, d′):

1. Case d = +, d′ = +:
decision(ml, r, ~q) = + ∧ decision(mk, r, ~q) = +
Therefore, the first clause of getPrime() is true.

2. Case d = NA, d′ = NA:
decision(ml, r, ~q) = NA ∧ decision(mk, r, ~q) = NA
Therefore, the third clause of getPrime() is true.

3. Case d = +, d′ = NA:
decision(ml, r, ~q) = + ∧ decision(mk, r, ~q) = NA
Therefore, the first clause of getPrime() is true.

4. Case d = NOOP, d′ = NA:
decision(ml, r, ~q) = NOOP ∧ decision(mk, r, ~q) = NA
Therefore, the fourth clause of getPrime() is true.

The remaining cases can be inferred. Any non-conflicting decision will satisfy at least one
clause of getPrime(). Since these clauses are joined by disjunction, every mgl′ will be true.

Proof of correctness of the algorithm in section 7.4 with respect to the formal property stated
in section 7.2:

Fix any r, ~q and show both directions of the bidirection hold:
Proof of ⇒:

1. Case decision(r, ~q,mj) = +:
a. ∃ml ∈ {mi}. decision(r, ~q,ml) = +

Let A =
{

(mgk,l ∧mgk,l′, uk,l) : (mgk,l,uk,l)∈mgl∈{mi},
r=rk,~q=~qk,sk=+

}

By Lemma 1 and decision(r, ~q,mj) = + :
∃ml ∈ {mi}, (mgk,l ∧mgk,l′, uk,l) ∈ A. mgk,l ∧mgk,l′ ∧ ugk,l

Assume for contradiction ∃(mga,l, ua,l) ∈ ml . r = ra ∧ sa = − ∧ ~q = ~qa ∧mga,l ∧ uga,l

By Lemma 2, mgk,l′ → mga,l′
By Lemma 1, (mga,l ∧mga,l′, ua,l) ∈ mj

Thus, decision(r, ~q,mj) = NOOP

The assumption led to a contradiction in decision(r, ~q,mj), so decision(r, ~q,ml) = +
b. (mgk,l ∧mgk,l′, ugk,l) ∈ A ∧ mgk,l ∧mgk,l′ ∧ ugk,l ⇒
¬∃r′, ~q′,mn ∈ {mi}.conflict(decision(r′, ~q′,ml), decision(r′, ~q′,mn)) :
Assume for contradiction ∃r′, ~q′,mn ∈ {mi}.

conflict(decision(r′, ~q′,ml), decision(r′, ~q′,mn))
By Lemma 3, ¬mgl′
Contradiction so assumption false:

¬∃r′, ~q′,mn ∈ {mi}.conflict(decision(r′, ~q′,ml), decision(r′, ~q′,mn))

c. Thus, we showed at least one module in {mi} makes the appropriate positive update
decision, and this same module does not conflict with any others.

2. Case decision(r, ~q,mj) = −:
The proof follows by switching the ‘+’ and ‘−’ symbols in the preceding case.

3. Case decision(r, ~q,mj) = NOOP :
The structures is similar to case 1, with the following modifications:

a. Modify set A so that instead of containing applicable positive
update rules for the given relation and input, it contains pairs of applicable
rules for a given relation and input where one member of the pair is positive,
and the other negative.

b. The contradiction is achieved by assuming at least one of the elements in the pair
for a given relation and input is not present in the module ml. Then the
decision will not be NOOP, creating a contradiction.

4. Case decision(r, ~q,mj) = NA:
a. Consider some module ml in the input set. By the other 3 cases:

1. Case decision(r, ~q,ml) = +:
By II.1, if ml has no conflicts, then decision(r, ~q,mj) = +.
This is a contradiction, thus
¬decision(r, ~q,ml) = +→ ∃mk ∈ {mi}.conflict(decision(r, ~q,ml), decision(r, ~q,mk))

2. Case decision(r, ~q,ml) = −:
This case follows from II.2.

3. Case decision(r, ~q,ml) = NOOP :
This case follows from II.3.

b. As decisions are well defined, with the range of {+,−, NOOP,NA}, all
modules with decisions that are not NA have been shown to have conflicts.

Proof of ⇐:
1. Case decision(r, ~q,ml) = + and no conflicts for ml:

a. ∃(mgk,l ∧mgk,l′, uk,l) ∈ mj.rk,l = r ∧ sk,l = + ∧ ~qk,l = ~q:
decision(r, ~q,ml) = +⇒ ∃(mgk,l, uk,l) ∈ ml ∈ {mi}.

mgk,l ∧ ugk,l ∧ rk,l = r ∧ sk,l = + ∧ ~qk,l = ~q
By Lemma 4, no conflicts for ml ⇒ ∀k.mgk,l′
Thus, ∃(mgk,l ∧mgk,l′, uk,l) ∈ mi.

mgk,l ∧mgk,l′ ∧ ugk,l ∧ rk,l = r ∧ sk,l = + ∧ ~qk,l = ~q
b. ¬∃(mgk,l ∧mgk,l′, uk,l) ∈ mj . rk,l = r ∧ sk,l = − ∧ ~qk,l = ~q:

Assume to achieve a contradiction that:
∃(mge,f ∧mge,f ′, ue,f) ∈ mj .

re,f = r ∧ se,f = − ∧ ~qe,f = ~q
By Lemma 1,

∃(mge,f , ue,f) ∈ mf ∈ {mi}.
mge,f ∧ uge,f ∧ re,f = r ∧ se,f = − ∧ ~qe,f = ~q

decision(r, ~q,mf) ∈ {−, NOOP}
Contradiction as conflict(decision(r, ~q,ml), decision(r, ~q,mf)), contrary to given.

c. By (a.) and (c.), all update rules in mj for r, ~q yield are either additive (+) or
not applicable, and there exists at least one applicable additive
update in mj for r, ~q, so decision(r, ~q,mj) = +

2. Case decision(r, ~q,ml) = − and no conflicts for ml:
The proof follows by switching the ‘+’ and ‘−’ symbols in the preceding case.

3. Case decision(r, ~q,ml) = NOOP and no conflicts for ml:
Similar to case 1 part a, as the decision of a nonconflicting module being

composed is a NOOP, there are both applicable positive and negative update rules
for the given relation and input. Irrespective of any other update rules in the
composition, the decision for the given relation will be a NOOP.

4. Case decision(r, ~q,ml) = NA or there exists a conflcit for ml:
Case decision(r, ~q,mj) = +:

By I.1, decision(r, ~q,mj) = +→ ∃mk ∈ {mi}.decision(r, ~q,mk) = +.
∀¬mb ∈ {mi}.conflict(decision(r, ~q,mk), decision(r, ~q,mb))

By assumption, for any such ml there is a conflict.
Therefore there is a contradiction and thus decision(r, ~q,mj) 6= +.

Case decision(r, ~q,mj) = −:
By I.2, decision(r, ~q,mj) = − → ∃mk ∈ {mi}.decision(r, ~q,mk) = −.

∀¬mb ∈ {mi}.conflict(decision(r, ~q,mk), decision(r, ~q,mb))
By assumption, for any such ml there is a conflict.
Therefore there is a contradiction and thus decision(r, ~q,mj) 6= −.

Case decision(r, ~q,mj) = NOOP :
By I.3, decision(r, ~q,mj) = NOOP → ∃mk ∈ {mi}.decision(r, ~q,mk) = NOOP.

∀¬mb ∈ {mi}.conflict(decision(r, ~q,mk), decision(r, ~q,mb))
By assumption, for any such ml there is a conflict.
Therefore there is a contradiction and thus decision(r, ~q,mj) 6= NOOP .

As decisions are well defined, with the range of {+,−, NOOP,NA}, all decisions
of the output module mj other than NA have been shown to have contradictions,
therefore decision(r, ~q,mj) = NA.

9 Evaluation of Algorithm Output

We applied the algorithm to a set of modules representing the Continue policy.

9.1 Features Used in Practice in Continue

While rewriting our Continue policy to make use of modules, we noticed several interesting prop-
erties of our policy with modules before it was transformed into the ASMRT language. First, while
intentional no-ops were allowed, taking advantage of them was neither necessary nor natural when
writing the policy with modules. Furthermore, all of the conflicts between modules were conflicts
between + and − decisions, rather than between either of those and NOOP decisions. This is a
result of the previous point, but still worth noting because much work was done to address the
latter case. Both the correctness proof and algorithm itself could potentially be simplified if this
concern were removed. Another feature we never utilized was the ability to nest modules within
each other. This never felt necessary in writing the policy with modules, though it is probable that
larger policies would benefit from such nesting. In contrast, previous work by Tschantz et al in
modelling Continue [5] with XACML heavily utilized nesting.

9.2 Policy Bugs Encountered

The majority of the bugs encountered in the original policy were due to unintentional no-ops. It
should be noted that we recognized this failing while writing the original policy which motivated
the development of the composition operator. The module system fixes these bugs in the original
policy. Adding one update rule without the module system could potentially introduce dozens or
more unintentional no-ops, the prevention of which would require many additional guards. With
the composition operator, the generation of these guards is automated. The module system limits
the scope of conflicts by preventing no-ops between modules.

9.3 Policy Bugs Fixed by the Module System

There are well over 20 unintentional-no-op-related bugs, roughly uniformly distributed, in the
original policy’s first hundred lines of code, and the rest of the policy demonstrates similar flaws.
These were fixed by converting to modules and composing.

9.4 Observations About the Module System

In the ASMRT output by our algorithm for the Continue policy, there is a significant increase in the
size of the module guard for any module which has a rule updating a relation updated by another
module. In our case, the guard of the module handling the RemoveUser input relation increases
nearly ten times in the number of conjunctions because it updates almost every memory relation
in the system, and therefore must be guarded against no-ops with almost every other module.
However, this is the worst case scenario and the exception for the Continue policy. Most modules
in the modularized Continue policy update a very small number of relations, usually not greater
than 4. In most systems, there are very few events which will require updates to the majority of

the system. This could also be a result of the way we constructed the Continue policy; every action
and relation in our policy is parameterized by user. It is possible that a different parameterization
of the system would not have any individual input which could cause system-wide updates. It is
worth noting that correctly writing the policy without modules such that unintentional no-ops do
not occur would require the author to generate these same guards by hand. Thus the resulting pol-
icy is no larger or more complex to verify than the correct policy generated without using modules,
despite being easier to write.

The module system allows a large degree of flexibility in that an arbitrarily large number of
update rules can appear in a module. These sets of update rules succeed and fail atomically which
introduces a new type of programming error. By including too many updates in a module, it is
possible to have some updates unnececssarily fail to execute. Similarly, including too few updates
to address certain input relations has the potential to allow some updates to execute even when
correctly modeling the system at hand requires that they not. This suggests that conversion of a
policy into modules is not absolutely straightforward. In practice, however, we have found that the
choice of where to separate blocks of policy into modules is actually clear. We chose to construct a
module for every potential individual input relation, and have the body of each module deal with
any and all updates relevant to that one input relation.

The module system is fairly intuitive to use, powerful, and helps to prevent many occurrences of
potentially serious errors. On top of this, it makes policy updates much easier. Updating a properly-
guarded hand-written policy would require revisiting the entire policy to ensure that all parts
were appropriately guarded. With the module system, it is possible to update one small module
appropriately, and know that the impact of the change is limited, guaranteed by the composition
algorithm which satisfies our saftey property.

9.5 Related Work

Spielmann’s work [12, 13, 14] provides us with a basis for the verification of ASM Relational Trans-
ducers. His work introduces the idea of modeling Relational Transducers as ASMs in order to
increase their power and to connect them to a language shown to be useful in practice. Spielmann
does not develop an atomic update system because his focus is simply on developing the use of
ASMs as Relational Transducers. However, atomic sets of updates turn out to be an extremely
useful capability for Relational Transducers and other database-oriented systems.

Because Spielmann’s work does not provide atomic updates, actually modeling a parallel sys-
tem with his ASM Relational Transducers becomes very cumbersome. If one desires an atomic
set of updates, it becomes necessary to effectively implement the module system described earlier,
hand encoding each dependency. This is especially important when considering the modeling of
applications such as web programs that will almost ceratinly have multiple points of parallel access,
each one potentially adding multiple conflicts.

Existing abstract state machine systems, including ASM-Workbench [4], XASM [2], and ASML [8],

provide means of composing programs. The general approach in this area is similar to our own
by allowing the external definition of a subprogram and then including it in the parent. Unless
there is a subsequent program transformation to enforce interesting properties, we will not dwell on
this case in the following descriptions. Despite the variety of composition techniques, each of these
systems are still susceptible to the consistent update problem and do not prevent the introduction
of inconsistencies when composing consistent programs.

ASM-Workbench [4], with the underlying ASML-SL language, utilizes rule-macros. Large rule-
macros are called programs and support naming and thus embedding. Additionally, appeals to the
outside world or fucntions that are not know at the time of modeling can be described with exteranl
functions that are included in basic type checks. Rule-macros support composition similar to that
found in [3].

XASM [2] provides relatively rich support of modules. External functions may be called within
an ASM program, running in their own time to return a value as well as an update set to be merged
in to the normal updates in a transition. The return of this update set signifies that the consistency
problem still exists. There is a similar ability to call environment functions as in ASM-Workbench.

ASML provides means of handling inconsistencies: it supports transactional semantics through
exception handling. Rule may throw an exception that may be caught elsewhere, restoring state.
However, both of these operations are manually specified with try/catch/throw constructs instead
of being automatically caught at the module boundry. Additionally, it is not clear how to detect
inconsistencies with this approach.

Nicolosi-Asmundo and Riccobene [3] present two forms of composition for building ASMs, the
first being the naive approach and the second adding explicit structure to components in order to
form a basis for guarantees. Feature composition is the intuitive composition technique: simply run
multiple smaller ASMs in parallel. In feature composition, compatibility is assumed by appealing
to external techniques, such as tests for arity and name checking. The second approach, called
component composition, assumes certain relations to be used as communication channels between
component ASMs in a style akin to message passing. It is necessary to check that these particular
relations are used appropriately by each component, and the technique renames other relations
in each component to effectively create separate namespaces for each component, modulo the
communication channels.

Both composition techniques are useful. The former is well-suited for situations where basic
composition is all that is necessary, but only if ther are no potential inconsistencies. The latter
is well suited for complex systems with internal state within each component of a system. Both
maintazin a safety property that any run of an individual component can be found in the runs of
the composed system. However we do not strive to provide this guarantee as we are more interested
in easily maintaining consistency and ensuring progress can be made.

Module composition provides an easier-to-specify approach to composition than component
composition, while being safer than feature composition in situations where modified behavior is
acceptable.

The Marianna et al. approach provides a useful safety property, and describes an intuitive
technique and a structured technique for specifying composition, a task we automate.

10 Conclusion

We have shown that the Continue Conference Manager can be modeled by Abstract State Machine
Relational Transducers (ASMRT). The business model supported by Relational Transducers pro-
vides a good abstraction for the web application realm of Continue. Furthermore, using first order
logic to describe every state in ASMs provides the expressiveness needed to develop a full model
for Continue.

Through this example, we have shown that ASMRTs can be used to model common ideas of
fine-grained security policies. Revocation, separation of duties, and separation of privilege can all
be simply modeled in ASMRTs.

We chose ASMRTs so we could automatically verify properties of the Continue Conference
Manager thus guaranteeing correctness. This is done with First Order Temporal Logic (FTL),
allowing us to verify fine-grained temporal properties of our model. We have shown that some of
the weaknesses in the property language are balanced by additional expressiveness in the modeling
language in the form of mutable state.

ASMRTs provide a simple way of resolving conflicting relation updates through the use of no-
ops: if there is a conflict, do nothing with the involved relations. This is helpful since the modeler
does not need to deal extensively with the handling of conflicts.

However, the automatic generation of no-ops is problematic. There is no language support for
dealing with no-ops, such as exception handling. Thus, in order to explicitly manage no-ops, extra
encoding is needed to identify and handle conflicts. It is also of concern that when a no-op occurs,
the user of the system is not notified: the system silently fails. Thus, the user is unable to react
appropriately.

In order to solve these problems, we have introduced modules and no-op reporting. By compart-
mentalizing an ASMRT model into modules, we have proved that one can apply our composition
operator to generate an ASMRT model that does not allow inter-module conflicts. Furthermore, we
showed a method of automatically generating user output notification every time a no-op occurs.
Thus, users can react accordingly to intentional no-ops and properties can be verified about the
occurance of no-ops.

In our example use of the composition operator on our Continue model, we demonstrate the
usefulness of modules. In our original policy without modules, there were numerous bugs caused
by unintentional no-ops. By using modules, we eliminated all of these.

The techniques that we developed, no-op reporting and the module system, are applicable not
just to ASMs for security policies, but to ASMs in general. Thus, these two systems will allow for
ease of development across various problem domains that utilize ASMs.

11 Future Work

As pointed out in section 9.4, it is possible to unnecessarily constrain some updates from occurring
by including too many update rules in one module. However it may not always make sense from
the policy-writer’s perspective to have such a module separated into two modules with very similar
module guards. It is possible that it may not matter if one or more of the updates in a given module
conflict with other modules, but only matters if a conflict occurs within a specific subset. Therefore
it may be worth investigating a way to mark a module such that only a specific set of relations
within it are permitted to be involved in conflicts, and others relations are permitted to conflict
with other modules without preventing the entire module from firing. Furthermore, if a module
system is used, it may be of benefit to see which modules caused a no-op, not just that a no-op
occurred. Finally, we believe separating policy from business logic and providing a transformation
to join the two is crucial in future research in policy language models. Recent work by Pucella is
moving in this direction [11].

References

[1] Serge Abiteboul, Victor Vianu, Brad Fordham, and Yelena Yesha. “Relational Transducers
for Electronic Commerce”. pages 179–187, 1998.

[2] Matthias Anlauff. “XASM - An Extensible, Component-Based ASM Language”. In ASM ’00:
Proceedings of the International Workshop on Abstract State Machines, Theory and Applica-
tions, pages 69–90, London, UK, 2000. Springer-Verlag.

[3] Marianna Nicolosi Asmundo and Elvinia Riccobene. “Consistent Integration for Sequential
Abstract State Machines”. In Abstract State Machines 2003. Advances in Theory and Practice:
10th International Workshop, ASM 2003, Taormina, Italy, March 3-7, 2003. Proceedings, page
324. Springer Berlin / Heidelberg, 2003.

[4] G. Del Castillo. “The ASM Workbench: an Open and Extensible Tool Environment for
Abstract State Machines”. In Proceedings of the 28th Annual Conference of the German
Society of Computer Science. Technical Report, Magdeburg University, 1998.

[5] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl Tschantz. “Veri-
fication and Change-Impact Analysis of Access-Control Policies”. In International Conference
on Software Engineering, 2005.

[6] G. Gottlob, G. Kappel, and M. Schrefl. “Semantics of object-oriented data models—The
evolving algebra approach”. In J. Schmidt and A. Stogny, editors, Next Generation Information

System Technology, First International East/West Database Workshop, volume 504, pages
144–160, Kiev, USSR, October 1990. Springer-Verlag.

[7] Yuri Gurevich. “Evolving Algebras: An Attempt to Discover Semantics”. In G. Rozenberg and
A. Salomaa, editors, Current Trends in Theoretical Computer Science, pages 266–292. World
Scientific, River Edge, NJ, 1993.

[8] Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. “Semantic Essence of AsmL”. In
Theoretical Computer Science, pages 360–412, 2005.

[9] Daniel Jackson. “Alloy: a lightweight object modelling notation”. Software Engineering and
Methodology, 11(2):256–290, 2002.

[10] Shriram Krishnamurthi. “The CONTINUE Server (or, How I Administered PADL 2002 and
2003)”. In PADL ’03: Proceedings of the 5th International Symposium on Practical Aspects of
Declarative Languages, pages 2–16, London, UK, 2003. Springer-Verlag.

[11] Riccardo Pucella and Vicky Weissman. “Reasoning about Dynamic Policies”. In Igor
Walukiewicz, editor, FoSSaCS, volume 2987 of Lecture Notes in Computer Science, pages
453–467. Springer, 2004.

[12] M. Spielmann. “Automatic Verification of Abstract State Machines”. In Proceedings of 11th
International Conference on Computer-Aided Verification (CAV ‘99), volume 1633 of LNCS,
pages 431–442. Springer-Verlag, 1999.

[13] M. Spielmann. “Model Checking Abstract State Machines and Beyond”. In International
Workshop on Abstract State Machines ASM 2000, LNCS, pages 323–340. Springer-Verlag,
2000.

[14] M. Spielmann. “Verification of Relational Transducers for Electronic Commerce”. In 19th
ACM Symposium on Principles of Database Systems PODS 2000, Dallas, pages 92–93. ACM
Press, 2000.

Appendix: Output from Composing Continue Policy Modules

inputs:

AdvancePhase (curuser)

AdvancePaperPhase (curuser, paper)

ModifySubmission (curuser, new-paper)

AddConflict (curuser, user, paper)

DecidePaper(curuser, paper, decision)

ReviewPaper (curuser, paper, review)

AddConflict (curuser, user, paper)

ModifyUserPassword (curuser, old-password, new-password)

ModifyUserInfo (curuser, user, new-name)

EditConferenceInfo (curuser, new-info)

UnassignPaper (curuser, user, paper)

AssignPaper (curuser, user, paper)

UnbidPaper (curuser, paper)

BidPaper (curuser, paper)

RemovePaper (curuser, paper)

RemoveUser (curuser, user)

ReadPaper (curuser, paper)

ReadReview (curuser, review)

CreateAuthor (username, name)

CreateReviewer (curuser, newuser, name)

//Job Changes

changeUserJobToReviewer(curuser, user)

changeUserJobToNotReviewer(curuser, user)

changeUserJobToAdmin(curuser, user)

changeUserJobToNotAdmin(curuser, user)

memory:

Admin (user)

Author (user)

Reviewer (user)

ConferenceInfo ()

User (user, name)

Password (user, password)

Conflicts (user, paper)

DecidedPapers (paper, decision)

AssignedReviews (user, paper)

PaperReviews (user, paper, review)

PaperBids (user, paper)

AcceptedPapers (paper)

Papers (user, paper)

CurrentPhase ()

PaperPhase (paper, phase)

db:

//DECISIONS

Accepted

Rejected

//CONFERENCE PHASES

Initialization

PreSubmission

Submission

Bidding

Assignment

Reviewing

Discussion

Notification

Publishing

//PAPER PHASES

PAssignment

PReviewing

PDiscussion

PDecided

InitialInfo

InitialAdmin

DefaultPassword

output:

PhaseAdvanced(phase)

PaperStateAdvanced(phase)

NewPaperSubmission(user)

ConflictAdded(user, paper)

PaperDecision(paper, decision)

UserModified(user)

InfoChanged

AssignmentModified(user,paper)

BigModified(user,paper)

PaperDeleted(paper)

UserDeleted(user)

PaperIsRead(user,paper)

ReviewIsRead(user,paper)

AuthorCreated(user,paper)

ReviewerCreated(user,paper)

ActionFailed(user)

ReviewSubmitted(user, paper, review)

log: input U ouput

//==//

memory rules:

/*Initialization*/

//Set up conference if it hasn’t started.

if NOT exists state . CurrentPhase = state then

ConferenceInfo = InitialInfo

Admin(InitialAdmin)

CurrentPhase = Initialization

/* Other memory rules */

//Phase Advancement

if AdvancePhase(curuser) AND Admin(curuser)

AND NOT (AdvancePaperPhase(curu, paper) AND Admin(curu)) then

if CurrentPhase = Initialization then

CurrentPhase = PreSubmission

PhaseAdvanced(PreSubmission)

else if CurrentPhase = PreSubmission then

CurrentPhase = Submission

PhaseAdvanced(Submission)

else if CurrentPhase = Submission then

CurrentPhase = Bidding

PhaseAdvanced(Bidding)

else if CurrentPhase = Bidding then

CurrentPhase = Assignment

PhaseAdvanced(Assignment)

forall u, p | Papers(u, p):

PaperPhase(p, PAssignment)

else if CurrentPhase = Assignment then

CurrentPhase = Reviewing

PhaseAdvanced(Reviewing)

else if CurrentPhase = Discussion then

CurrentPhase = Notification

PhaseAdvanced(Notification)

else if CurrentPhase = Notification then

CurrentPhase = Publishing

PhaseAdvanced(Publishing)

else

ActionFailed(curuser)

else

ActionFailed(curuser)

//Submitting a paper

if ModifySubmission(curuser, new-paper) AND Author(curuser)

AND CurrentPhase = Submission

AND NOT (RemoveUser(curu, user) AND Admin(curu))

then

forall p: NOT Papers(curuser, p)

Papers(user, new-paper)

NewPaperSubmission(curuser)

else

ActionFailed(curuser)

//Creating conflicts

if AddConflict(curuser, user, paper) AND (Admin(curuser) OR ((curuser = user)

AND Reviewer (user))

AND NOT (BidPaper(user, paper) AND (currentPhase = Bidding) AND Reviewer(user)

AND NOT Conflicts(user, paper))

AND NOT (ReviewPaper (user, paper, review) AND AssignedReviews (user, paper))

AND NOT (AssignPaper(curu, user, paper) AND currentPhase = Assignment

AND Admin(curu) AND Reviewer(user) AND NOT Conflicts(user, paper))

then

Conflicts(user, paper)

NOT AssignedReviews(user, paper)

forall r : NOT PaperReviews(user, paper, r)

NOT PaperBids(user, paper)

ConflictAdded(user, paper)

else

ActionFailed(curuser)

//Paper Phases

if AdvancePaperPhase(curuser, paper) AND Admin(curuser)

AND NOT (AdvancePhase(user) AND Admin(user)) then

if PaperPhase(paper, phase) and (phase = PAssignment) then

if AssignedReviews(reviewer, paper) then

NOT PaperPhase(paper, phase)

PaperPhase(paper, PReviewing)

PaperStateAdvanced(paper, PReviewing)

else if PaperPhase(paper, phase) and (phase = PReviewing) then

if PaperReviews(reviewer, paper, review) then

NOT PaperPhase(paper, phase)

PaperPhase(paper, PDiscussion)

PaperStateAdvanced(paper, PDiscussion)

else if PaperPhase(paper, phase) and (phase = PDiscussion) then

if DecidePaper(curuser, paper, decision) then

NOT PaperPhase(paper, phase)

PaperPhase(paper, PDecided)

PaperStateAdvanced(paper, PDecided)

else

ActionFailed(curuser)

else

ActionFailed(curuser)

//Change Jobs

if changeUserJobToReviewer(curuser, user) AND Admin(curuser)

AND NOT (changeUserJobToNotReviewer(curu, user) AND Admin(curu))

AND NOT (CreateAuthor (user, name)) then

Reviewer(user)

NOT Author(user)

UserModified(user)

if changeUserJobToNotReviewer(curuser, user) AND Admin(curuser)

AND NOT (changeUserJobToReviewer(curu, user) AND Admin(curu))

AND NOT (CreateReviewer(u, newuser, name) AND Admin(u)) then

NOT Reviewer(user)

UserModified(user)

if changeUserJobToAdmin(curuser, user) AND Admin(curuser)

AND NOT (changeUserJobToNotAdmin(curu, user) AND Admin(curu))

AND NOT (RemoveUser(u, user) AND Admin(u))

AND NOT CreateAuthor(user, name) then

Admin(user)

NOT Author(user)

UserModified(user)

if changeUserJobToNotAdmin(curuser, user) AND Admin(curuser)

AND NOT (changeUserJobToAdmin(curuser, user) AND Admin(curuser)) then

NOT Admin(user)

UserModified(user)

if ReadPaper(curuser, paper) AND NOT Conflicts(curuser, paper) then

PaperIsRead(curuser,paper)

if ReadReview (curuser, review) AND

exists paper, user : PaperReviews(user, paper, review)

AND NOT Conflicts(curuser, paper) then

ReviewIsRead(curuser,review)

if CreateAuthor(username, name)

AND NOT (changeUserJobToReviewer(curuser, username) AND Admin(curuser))

AND NOT (changeUserJobToAdmin(curu, username) AND Admin(curu))

AND NOT (RemoveUser(u, username) AND Admin(u)) then

User(username, name)

Author(username)

Password(username, DefaultPassword)

UserModified(username)

if CreateReviewer(curuser, newuser, name) AND Admin(curuser)

AND NOT (RemoveUser(u, username) AND Admin(u))

AND NOT (changeUserJobToNotReviewer(curu, user) AND Admin(curu)) then

User(newuser, name)

Password(newuser, DefaultPassword)

Reviewer(newuser)

UserModified(username)

if RemoveUser(curuser, user) AND Admin(curuser)

AND NOT (ModifySubmission(user, new-paper) AND Author(user))

AND NOT (AddConflict(curu, user, paper) AND

(Admin(curu) OR ((curu = user) AND Reviewer(user)))

AND NOT (changeUserJobToReviewer(u, user) AND Admin(u))

AND NOT (CreateAuthor(user, name))

AND NOT (CreateReviewer(cu, user, name) AND Admin(cu))

AND NOT (ModifyUserInfo (cur, user, name) AND (Admin(curuser)

OR (curuser = user)))

AND NOT (AddConflict(curu, user, paper) AND (Admin(curu)

OR ((curu = user) AND Reviewer(user)))

AND NOT (ReviewPaper(curusr, paper, review)

AND AssignedReviews(curusr, paper) AND Papers(user, paper))

AND NOT (BidPaper(curus, paper) AND (currentPhase = Bidding)

AND Papers(user, paper))

AND NOT (BidPaper(user, paper) AND (currentPhase = Bidding)

AND Reviewer(user))

AND NOT (AssignPaper(curuser, user, paper) AND currentPhase = Assignment

AND Admin(curuser) AND Reviewer(user)

AND NOT Conflicts(user, paper))

AND NOT (DecidePaper (cur1, paper, decision) AND Admin (cur1)

AND Papers(user, paper))

AND NOT (ModifySubmission(user, new-paper) AND Author(user))

AND NOT (ReviewPaper (user, paper, review)

AND AssignedReviews(user, paper))

AND NOT (BidPaper(user, paper) AND (currentPhase = Bidding)

AND Reviewer(user) AND NOT Conflicts(user, paper))

AND NOT (changeUserJobToAdmin(curuser, user) AND Admin(curuser))

AND NOT (ModifyUserPassword (curu, user, password, new-password)

AND (((curu = user) AND Password(user, password))

OR (Admin(curu))))

then

if (exists n : User(user, n)) and Admin(curuser) then

forall n NOT User(user, n)

if Conflicts(user, p) then

NOT Conflicts(user, p)

if Reviewer(user) then

if PaperReviews(user, p, r) then

NOT PaperReviews(user, p, r)

if PaperBids(user, paper) then

NOT PaperBids(user, paper)

if AssignedReviews(user, paper) then

NOT AssignedReviews(user, paper)

NOT Reviewer(user)

else if Author(user) then

if Papers(user, paper) then

if AcceptedPapers (paper) then

NOT AcceptedPapers (paper)

NOT Papers(user, paper)

if PaperReviews(reviewer, paper, review) then

NOT PaperReviews(reviewer, paper, review)

if PaperBids(reviewer, paper) then

NOT PaperBids(reviewer, paper)

NOT Author(user)

if Admin(user) then

NOT Admin(user)

NOT User(user, name)

forall password : NOT Password (user, password)

UserDeleted(user)

if RemovePaper(curuser, paper) AND (Papers(curuser, paper) OR Admin(curuser))

AND NOT (AssignPaper(cur, curuser, paper) AND currentPhase = Assignment

AND Admin(cur) AND Reviewer(curuser)

AND NOT Conflicts(curuser, paper))

AND NOT (BidPaper(curuser, paper) AND (currentPhase = Bidding)

AND Reviewer(curuser) AND NOT Conflicts(curuser, paper))

AND NOT (DecidePaper(user, paper, decision) AND Admin (user))

AND NOT (ReviewPaper(user, paper, review) AND AssignedReviews(user, paper))

then

if AssignedReviews(user, paper) then

NOT AssignedReviews(user, paper)

if PaperBids(user, paper) then

NOT PaperBids(user, paper)

if AcceptedPapers(paper) then

NOT AcceptedPapers(paper)

if DecidedPapers(paper) then

forall dec : NOT DecidedPapers(paper, dec)

if PaperReviews(user, paper, r) then

NOT PaperReviews(user, paper, r)

PaperDeleted(paper)

if BidPaper(curuser, paper) AND (currentPhase = Bidding)

AND Reviewer(curuser) AND NOT Conflicts(curuser, paper)

AND NOT (AddConflict(curu, curuser, paper) AND (Admin(curu)

OR ((curu = curuser) AND Reviewer (curuser)))

AND NOT (RemoveUser(user, curuser) AND Admin(user))

then

PaperBids(curuser, paper)

BidModified(curuser,paper)

else

ActionFailed(user)

if UnbidPaper(curuser, paper) AND currentPhase = Bidding

AND NOT (RemoveUser(user, curuser) AND Admin(user))

then

if Reviewer(curuser) then

NOT PaperBids(curuser, paper)

BidModified(curuser, paper)

else

ActionFailed(curuser)

if AssignPaper(curuser, user, paper) AND currentPhase = Assignment

AND Admin(curuser) AND Reviewer(user) AND NOT Conflicts(user, paper)

AND NOT (AddConflict(curu, user, paper) AND (Admin(curu)

OR ((curu = user) AND Reviewer (user)))

then

AssignedReviews(user, paper)

AssignmentModified(user,paper)

else

ActionFailed(curuser)

if UnassignPaper(curuser, user, paper) AND currentPhase = Assignment

AND Admin(curuser)

AND NOT (AssignPaper(cur2, user, paper) AND currentPhase = Assignment

AND Admin(cur2) AND Reviewer(user)

AND NOT Conflicts(user, paper))

then

NOT AssignedReviews(user, paper)

AssignmentModified(user,paper)

else

ActionFailed(curuser)

if EditConferenceInfo (curuser, conference-info) AND Admin (curuser) then

ConferenceInfo = conference-info

InfoChanged()

else

ActionFailed(curuser)

if ModifyUserInfo (curuser, user, name) AND (Admin (curuser)

OR (curuser = user))

AND NOT (CreateAuthor(username, name))

AND NOT (CreateReviewer(curuser, newuser, name) AND Admin(curuser))

then

(forall names : NOT User(user, names))

User (user, name)

UserModified(user)

else

ActionFailed(curuser)

if ModifyUserPassword (curuser, user, password, new-password)

AND (((curuser = user) AND Password(user, password)) OR (Admin(curuser)))

AND NOT (RemoveUser(curu, user) AND Admin(curu))

then

NOT Password (user, password)

Password (user, new-password)

UserModified(user)

else

ActionFailed(curuser)

if DecidePaper (curuser, paper, decision) AND Admin (curuser)

AND NOT (DecidePaper(curu, paper, d2) AND Admin(curu) AND d2 != decision)

AND NOT (RemovePaper(curu, paper)

AND (Papers(curu, paper) OR Admin(curu)))

then

if exists d . DecidedPapers (paper, d) then

NOT DecidedPapers (paper, d)

DecidedPapers (paper, decision)

if d = Accepted

AcceptedPapers(paper)

PaperDecision(paper, decision)

else

ActionFailed(curuser)

if ReviewPaper(curuser, paper, review) AND AssignedReviews(curuser, paper)

AND NOT (AddConflict(curuser, user, paper)

AND (Admin(curuser) OR ((curuser = user) AND Reviewer (user)))

AND NOT (RemoveUser(curu, user) AND Admin(curu) AND Papers(user, paper))

AND NOT (RemovePaper(user, paper) AND (Papers(user, paper) OR Admin(user)))

then

PaperReviews (curuser, paper, review)

ReviewSubmitted(curuser, paper, review)

else

ActionFailed(curuser)

Appendix: Example Continue Policy Properties for Verification

//conflictEnforcement - Nobody can read/review a conflicted paper

G(forall author, paper, reviewer | Paper(author,paper) AND Reviewer(reviewer)

Conflicts(reviewer,paper) -> NOT PaperBid(reviewer,paper) AND NOT

PaperAssign(reviewer,paper) AND (forall review NOT

PaperReviews(reviewer,paper,review)) AND NOT ReadPaper(reviewer,paper))

//authorsDisabled - Authors can only submit in the Submission Phase

G(forall paper, user: NOT CurrentPhase = Submission ->

(X Papers(user,paper) -> Papers(user,paper)))

//validConference

G((exists u : Admin(u))

AND (forall u, n | Users(u,n),

Reviewer(u) OR Admin(u) OR Author(u))

AND (forall p, d | DecidedPapers(p,d),

d in Accepted U Rejected)

AND (forall u,p,r, PaperReviews(u,p,r) -> AssignedReviews(u,p)))

//checkPaperDeleted

G(RemovePaper(curuser,paper) ->

X(forall user, review, decision, paperphase:

NOT Papers(user, paper)

AND NOT DecidedPapers(paper, decision)

AND NOT AssignedReviews(user, paper)

AND NOT PaperReviews(user, paper, review)

AND NOT PaperBids(user, paper)

AND NOT PaperPhase(paper,paperphase)))

/* We don’t have checkOtherPapersUnchanged because in our model,

we actually can modify multiple papers simultaneously. */

//makeReviews

G(forall curuser, paper, review:

ReviewPaper(curuser, paper, review) AND AssignedReviews(curuser, paper) ->

X PaperReviews(curuser, paper, review))

//All papers in the Discussion phase have reviews

G(forall paper:

CurrentPhase = Discussion ->

exists user, review | PaperReviews(user, paper, review))

//Admins can always read reviews

G(forall u, reviewer, paper, review:

Admin(u) AND PaperReviews(reviewer, paper, review) AND ReadReviews(u,review)

->

X ReviewIsRead(u,review))

//noLongerRevise

G(forall u, paper, newpaper:

Papers(u,paper) AND ModifySubmission(u, newpaper) -> X Papers(u,paper))

