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Abstract
Researchers have developed several special-purpose type systems
and program logics to analyze JavaScript and other dynamically
typed programming languages. Still, no prior system can precisely
reason about both higher-order programs and mutable state; each
system comes with its own delicate soundness proof (when such
proofs are provided at all); and tools based on these theories (when
they exist) are a significant implementation burden.

This paper shows that JavaScript programs can be verified using
a general-purpose verification tool—in our case, F? (Swamy et al.
2011), a dependently typed dialect of ML. Our methodology con-
sists of a few steps. First, we extend prior work on λ JS (Guha et al.
2010) by translating JavaScript programs to F?. Within F?, we type
pure JavaScript terms using a refinement of the type dyn, an alge-
braic datatype for dynamically typed values, where the refinement
recovers more precise type information. Stateful expressions are
typed using the Hoare state monad. Relying on a general-purpose
weakest pre-condition calculus for this monad, we obtain higher-
order verification conditions for JavaScript programs that can be
discharged (via a novel encoding) by an off-the-shelf automated
theorem prover. Our approach enjoys a fully mechanized proof of
soundness, by virtue of the soundness of F?.

We report on experiments that apply our tool chain to verify a
collection of web browser extensions for the absence of JavaScript
runtime errors. We conclude that, despite commonly held misgiv-
ings about JavaScript, automated verification for a sizable subset
of the language is feasible. Our work opens the door to applying a
wealth of research in automated program verification techniques to
JavaScript programs.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Syntax and Semantics

General Terms Verification, Languages, Theory

Keywords Type systems, refinement types, Hoare logic, dynamic
languages

1. Introduction
JavaScript is the lingua franca of the web. Its highly dynamic na-
ture contributes both to the perception that it is easy to use (at
least for small programs), as well as to the difficulty of using it to
build secure applications. Whereas traditionally the security threat
has been limited by executing JavaScript within the confines of a
web browser’s sandbox, the scope of JavaScript is now consider-
ably broader, and recent trends indicate that it is likely to broaden
further still. For example, Metro1 applications in the forthcoming
Windows 8 operating system can be programmed in JavaScript,
and the language can be used to perform a wide range of system
calls on the host operating system. Tools that can effectively ana-
lyze JavaScript for attacks and vulnerabilities are thus becoming a
pressing need.

1 http://msdn.microsoft.com/en-us/windows/apps/

1 function foo(x) { this.g = x.f + 1; }
2 foo({f:0});
3 foo = 17;

1 let foo this args = let x = select args "0" in
2 update this "g" (plus (select x "f") (Int 1)) in
3 update global "foo" (Fun foo);
4 let args = let x = update (allocObject()) "f" (Int 0) in
5 update (allocObject()) "0" x in
6 apply (select global "foo") global args;
7 update global "foo" (Int 17)

Figure 1. A JavaScript program (top) and its MLjs version

Reasoning about JavaScript programs, however, poses several
challenges. Specifying the semantics of JavaScript is itself a sig-
nificant research question with which several groups are currently
engaged (Guha et al. 2010; Herman and Flanagan 2007; Maffeis
et al. 2008). Rather than address this again, we adopt Guha et al.’s
solution. Their approach, λ JS, gives a translation of a sizeable frag-
ment of JavaScript into a Scheme-like dynamically typed lambda
calculus. Based on λ JS, we developed a tool JS2ML, which trans-
lates JavaScript programs to ML. JS2ML, in effect, composes the
λ JS translation with a standard Scheme to ML translation. What
remains then is merely to reason about the programs emitted by
JS2ML.2 However, as one might expect, several difficulties remain.

1.1 A challenge: dynamically typed higher-order stores
The semantics of JavaScript involves many features and subtle in-
teractions among the features. These include prototype hierarchies,
scope objects, implicit parameters, implicit conversions, etc. How-
ever, following λ JS, the JS2ML translation simply desugars these
features into standard ML constructs.

Figure 1 illustrates the JS2ML translation—we call programs in
the image of the JS2ML translation “MLjs programs”. The func-
tions allocObject, select, and update are functions defined in a li-
brary for MLjs programs—they serve to create heap-allocated ob-
jects and to read and modify their fields. This library also defines
a type dyn for dynamically typed values, with constructors like Str,
Int, and Fun to inject values into the dyn type.

The definition of the JavaScript function foo is translated to
the λ -term foo in ML, with two arguments, this, corresponding to
the implicit this parameter in JavaScript, and an argument args,
an object containing all the (variable number of) arguments that
a JavaScript function may receive. Just like in JavaScript itself,
objects are dictionaries indexed by string-typed keys, rather than

2 While Guha et al. demonstrate that their semantics is faithful using an
extensive test suite, they make no claims that the λ JS translation is fully
abstract. Thus, when analyzing resulting programs of the λ JS translation,
we might miss some behaviors of the source program. This is a limitation
of our current work which we seek to address in the future by using a higher
fidelity translation.



containing statically known field names. In the body of foo, the x

argument corresponds to the value stored at the key "0" in the args
object. At line 3, the function foo is stored in the global object (an
implicit object in JavaScript) at the key "foo". At line 6 we see
that a function call proceeds by reading a value out of the global
object, calling the apply library function (which checks that its first
argument is a Fun v, for some v), and passing two arguments—the
global object, the receiver object for the call; and the args object
containing a single argument. Finally, at line 7, we update the global
object storing the integer 17 at the key "foo".

Now, suppose that one wished to prove that the call to the
addition function plus at line 2 always returned an integer. One must
prove that all callers of foo pass in an object x as the zeroth value in
the args object and that x has a field called "f", which contains an
integer value. But, even discovering all call-sites of foo is hard—
all (non-primitive) function calls occur via lookups into an untyped
higher order store (line 6), and this store is subject to strong updates
that can change the type of a field at any point (line 7). The problem
is similar to verifying C programs that call functions via void*
pointers stored in the heap—in JavaScript, every function call is
done in this style.

1.2 Contributions

We provide a new method for verifying dynamically typed, higher-
order stateful programs via a translation into F? (Swamy et al.
2011), a dependently typed dialect of ML. Our contributions are
as follows.

−We present JSPrims, a library of dynamic typing primitives in F?.
This library includes the definition of a type dyn, a new refinement
of type dynamic (Henglein 1994), which combines dynamic typing
with the Hoare state monad (Nanevski et al. 2008). We verify
the implementation of this library against a strong specification,
ensuring assertion safety for well-typed clients of this library. (§3)

−We develop JS2ML, a translation from JavaScript to ML, and
type the resulting (MLjs) programs against the JSPrims API for
verification. (§6.1)

−We provide a (semi-)automated methodology for verifying clients
of JSPrims. Our approach involves the use of a general-purpose
verification condition generator (VCGen) for ML programs (in F?),
which, given loop invariants, infers a weakest pre-condition for a
program. The VCGen is described in detail and proved sound in
a concurrent submission (Schlesinger and Swamy 2011). In this
paper, we demonstrate that our VCGen can be effectively applied
to MLjs programs. (§4)

−The proof obligations produced by VCGen make heavy use of
higher-order logic. Our fourth contribution is a new technique that
shows how higher-order verification conditions (particularly those
of the form produced by VCGen) can be incrementally compiled
to a set of first-order proof obligations that can be automatically
discharged by an off-the-shelf SMT solver—we use Z3 (de Moura
and Bjørner 2008) in our experiments. (§5)

−We extend JSPrims to include a partial specification of common
APIs used by JavaScript programs, including a fragment of the
Document Object Model (DOM). Our specification includes prop-
erties of recursive data structures (like DOM elements) using induc-
tive predicates, and giving specifications to higher-order functions
(including in some cases, functions of the third order). (§6)

−We evaluate our work experimentally by verifying a collection
of JavaScript web-browser extensions (on the order of 100 lines
each) for various properties, including, principally, the absence of
JavaScript runtime errors. In each case, apart from carefully writing
loop invariants, verification was automatic. (§6)

1.3 Limitations

Our work also suffers from two broad classes of limitations, first,
related to the fragment of JavaScript we currently support, and,
second, the inefficiency of our current prototype.
JavaScript fragment. Similar to other work, we consider closed,
eval-free JavaScript programs. We assume a sequential control
flow—we view the treatment of asynchrony in JavaScript as a
challenging, but orthogonal, problem. We provide limited support
for the mutation of prototype chains after an object is created—
handling more general prototypes is feasible with an additional
level of indirection in our model of the JavaScript heap, but the
proof burden is likely to be substantially larger, and the payoff for
this complexity is questionable. We also provide only limited sup-
port for JavaScript arrays, instead requiring collections of objects
to be handled using iterators—applying the vast body of research
into verifying array-manipulating programs to JavaScript is future
work.
Scaling our verification technique. At the moment, our prototype
is slow. Our largest program, about 90 lines of JavaScript source,
with about 10 functions, and two loops took about 70 minutes to
verify. The majority of this time is spent within Z3, particularly in
its partial model finding feature, which has not at all been tuned for
the kinds of problems we generate—we expect to tune Z3 for our
purposes in the immediate future. Furthermore, we show that with
some simple hints provided by the translation, performance can be
improved dramatically.

2. A review of F? and the Hoare state monad

We begin by presenting a primer on F?, in particular our encoding
of the Hoare state monad. For a more thorough presentation con-
sult Swamy et al. (2011).

F? is a variant of ML with a similar syntax and dynamic se-
mantics but with a more expressive type system. It enables general-
purpose programming with recursion and effects; it has libraries for
concurrency, networking, cryptography, and interoperability with
other .NET languages. After typechecking, F? is compiled to .NET
bytecode, with runtime support for proof-carrying code. It can also
be compiled to JavaScript, via type erasure. It has been used to pro-
gram and verify more than 40,000 lines of code, including security
protocols, web browser extensions, and distributed applications. Its
main typechecker, compiler, and runtime support are coded in F#.
We have also developed a core typechecker programmed in F? it-
self that has been self-certified for correctness (Strub et al. 2012).

The main technical novelty of F? is a kind system to keep track
of different fragments of the language and control their interaction.
By default, program terms (with kind ?) may have arbitrary effects.
Within these programs, proof terms (with kind P) remain pure
and terminating, and thereby provide a logically consistent core.
Besides, affine resources (with kind A) may be used for modular
reasoning on stateful properties. Finally, ghost terms (with kind E)
may be used only in specifications, to selectively control the erasure
of proof terms, when the proofs are irrelevant or unavailable (for
instance, when calling legacy code or using cryptography). A sub-
kinding relation places the kinds in a partial order P≤ ?≤ E, with
A being unrelated to the others.

In this paper, aside from the types of ML, we limit ourselves
to a few main F?-specific typing constructs. First, we use ghost
refinement types of the form x:t{φ}, the type of values v:t for which
the formula φ [v/x] is derivable from the hypothesis in the current
typing context. Second, we use dependent function arrows x:t→t’,
the type of functions whose domain contains values x of type t
and whose co-domain is of type t’, where t’ may depend on x. We
also use function arrows whose domain are types ’a of kind κ and



whose codomain are types t, written ’a::k→t, i.e., these are types
of functions polymorphic in types ’a of kind k.

The only base kinds we use in this paper are ? and E. We
also use the product kinds k⇒ k’ and t⇒ k for type construc-
tors or functions. For example, the list type constructor has kind
?⇒ ? , while the predicate Neq (for integer inequality) has kind
int⇒ int⇒ E . We also write functions from types to types using the
notation fun (’a::k)⇒ t, and from terms to types using fun (x:t)⇒ t’.
For example, fun (x:int)⇒ Neq x 0 is a predicate asserting that its
integer argument x is non-zero. As a general rule, the kind of a type
is ? if not explicitly stated otherwise.

F? is also parametric in the logic used to describe program prop-
erties in refinement formulas φ . These formulas φ are themselves
types (of kind E, and so purely specificational), but these types can
be interpreted in a logic of one’s choosing. In this paper, we use a
higher-order logic, extended with a theory of equality over terms
and types, a theory of linear integer arithmetic, and a select/update
theory of functional arrays (McCarthy 1962) (useful for modeling
heaps). Except for the higher-order constructs (which we handle
specially), all decision problems for the refinement logic are han-
dled by Z3, the SMT solver integrated with F?’s typechecker.

The type system and metatheory of F? has been formalized in
Coq, showing substitutivity and subject reduction, while a separate
progress proof has been done manually. These type soundness
results (modulo the soundness of the refinement logic) imply the
absence of failing assertions in any run of a well-typed F? program.
The Hoare state monad. F? supports several idioms of program-
ming with effects. One idiom, mentioned briefly earlier, involves
the use of affine types for resource usage. Another mechanism
adopted in F? is the Hoare state monad, shown below.

Encoding the Hoare state monad in F?

type heap :: ?
type ST (’Pre::heap⇒ E ) (’a::? ) (’Post::’a⇒ heap⇒ E ) =

h:heap{’Pre h}→ (x:’a ∗ h’:heap{’Post x h’})

val unitST : ’a::?
→ ’Post::’a⇒ heap⇒ E
→x:’a
→ST (’Post x) ’a ’Post

let unitST ’a ’Post x h = (x,h)

val bindST : ’a::? → ’b::?
→ ’Pre::heap⇒ E
→ ’Post1::’a⇒ heap⇒ E
→ ’Post::’b⇒ heap⇒ E
→ST ’Pre ’a ’Post1
→ (x:’a→ST (’Post1 x) ’b ’Post)
→ST ’Pre ’b ’Post

let bindST ’a ’b ’Pre ’Post1 ’Post f g h = let x, h’ = f h in g x h’

Informally, the Hoare state monad is simply the state monad
(heap→ (’a ∗ heap)) augmented with predicates to track the pre- and
post-conditions of a stateful computation that may read or write a
heap and produce an ’a-typed result. In the listing above heap is an
abstract type, and the ST ’Pre ’a ’Post is the type of computation
which when run in a heap h satisfying the pre-condition ’Pre h
produces a result x:’a and an output heap h’ satisfying the relation
’Post x h, unless it diverges.

This parameterized monad comes with the usual unit and bind
operations. The signature of the unitST function shows that any
value x:’a can be injected into the monad to produce a computation
that can satisfy any post-condition ’Post::’a⇒ heap⇒ E , so long
as the input heap satisfies ’Post x. The bindST function allows two
stateful computations to be composed, so long as the post-condition
of the first matches the pre-condition of the second.

Notice that writing specifications for the ST-monad that are
polymorphic in the post-condition predicate ’Post is quite conve-
nient, e.g., one does not have to directly state that unitST leaves the
input heap h unchanged. Without this polymorphic style one would
need state extra conditions to relate the output heap to the input
heap, for example, by making use of two-state predicates as post-
conditions. To avoid the additional complexity of two-state predi-
cates (and to simplify type inference), we embrace post-condition
polymorphism wholeheartedly—throughout this paper, we use a
variant of the Hoare state monad proposed by Schlesinger and
Swamy (2011) and shown below.

The post-condition polymorphic Hoare state monad
type DST (’a::? ) (’Tx::(’a⇒ heap⇒ E )⇒ heap⇒ E ) =

(’Post::’a⇒ heap⇒ E )→ST (’Tx ’Post) ’a ’Post
val returnDST: x:’a→DST ’a (fun (’Post::’a⇒ heap⇒ E )⇒ ’Post x)
val bindDST: ’Tx1::(’a⇒ heap⇒ E )⇒ heap⇒ E

→ ’Tx2::’a⇒ (’b⇒ heap⇒ E )⇒ heap⇒ E
→DST ’a ’Tx1
→ (x:’a→DST ’b (’Tx2 x))
→DST ’b (fun (’Post::’b⇒ heap⇒ E )⇒

’Tx1 (fun (x:’a)⇒ ’Tx2 x ’Post))

The DST ’a ’Tx type is a polymorphic Hoare state monad, where
’a is the type of the result of the computation and ’Tx is a predicate
transformer (Dijkstra 1975), which, given any post-condition, com-
putes a (usually weakest) pre-condition on the input heap which
ensures that the computation can be executed successfully.

Since DST is defined in terms of ST, the binds and units of
the ST monad carry over naturally. However, a more direct formu-
lation can also be given—their signatures are shown above. Ob-
serve that bindDST differs from bindST in that there is no need
for the post-condition of the first computation to precisely match
the pre-condition of the second—since post-conditions are always
polymorphic, a pre-condition for the entire composed computation
can be computed simply by composing their predicate transform-
ers. This should convey some intuition for why type inference is
easier with DST rather than ST—no subsumption rule to strengthen
pre-conditions and weaken post-conditions is necessary and a veri-
fication condition on the input heap can simply be computed using
unification and function composition.

3. A library for dynamic typing in F?

We now describe an F? library, JSPrims, which defines various
constructs suitable for verifying MLjs programs.

3.1 A refined type dynamic

Figure 2 shows the definition of our type dyn, based on the stan-
dard algebraic type dynamic, but with refinement types on each
case to recover precision. For example, we have the constructor Int,
which allows an integer i to be injected into the dyn type. The type
of (Int i) is d:dyn{EqTyp (TypeOf d) int}. (The type of Str is simi-
lar.) The refinement formula uses the binary predicate EqTyp, inter-
preted in the refinement logic as an equivalence relation on types.
It also uses the type function TypeOf, treated as an uninterpreted
function from dyn-typed values to E-types in the refinement logic.
(Recall, the sub-kinding relation allows ?-kinded types to be pro-
moted to E-kind.) Since EqTyp and TypeOf have special meaning
in the refinement logic, we tag them with the logic keyword just as
documentation—from the perspective of the type system, these are
simply type functions.

We use the Obj constructor to promote heap-resident MLjs
objects to the dyn type—the type loc, isomorphic to the natural
numbers, is the type of heap locations. The Undef constructor is
for the undefined value in MLjs.



type undef :: ?
logic type EqTyp :: E⇒ E⇒ E
logic type TypeOf (’a::? ) :: ’a⇒ E
type dyn =
| Int : int→d:dyn{EqTyp (TypeOf d) int}
| Str : string→d:dyn{EqTyp (TypeOf d) string}
| Obj : loc→d:dyn{EqTyp (TypeOf d) object}
| Undef : d:dyn{EqTyp (TypeOf d) undef}
| Fun : ’TxF::dyn⇒ dyn⇒ (dyn⇒ heap⇒ E )⇒ heap⇒ E

→ (this:dyn→args:dyn→DST dyn (’TxF args this))
→d:dyn{EqTyp (TypeOf d) (Function ’TxF)}

and Function :: (dyn⇒ dyn⇒ (dyn⇒ heap⇒ E )⇒ heap⇒ E )⇒ E

Figure 2. A refinement of type dynamic

The case for Fun merits closer attention. As we will see, the
JS2ML translation translates every JavaScript function to a 2-ary,
curried function. The first argument is for the implicit this param-
eter (made explicit in the translation), and the second parameter
is for all the other arguments represented as a dictionary. So, to
first approximation, the type of Fun is (dyn→dyn→dyn)→dyn,
but, this is, of course, too imprecise. We need a more precise
type that can capture the behavior of the function, including,
for example its effects on the heap—the predicate transform-
ers of the DST monad come to mind. We interpret every MLjs
function in the DST monad, and give them types of the form
this:dyn→args:dyn→DST dyn (’Tx args this), for some predicate
transformer ’Tx. Then, the refinement on the Fun constructor sim-
ply records the predicate transformer capturing the semantics of its
argument. The type constructor Function serves simply to coerce
the predicate transformer to kind E. In contrast to the uninter-
preted function TypeOf and the equivalence relation EqTyp, the
types Function, int, object, etc. are treated as distinct type constants
in the refinement logic. To document this difference, we tag TypeOf
and EqTyp with the logic keyword.

Our full library includes cases for the other JavaScript primitive
types as well. Note, from here on, unless we think they specifically
aid understanding, we omit kind annotations on type variables for
concision and clarity. We also use the equality operator and write
t = t’ instead of EqTyp t t’.

3.2 Modeling the JavaScript heap

We have two main design considerations in modeling the JavaScript
heap. First, to model a dynamically-typed higher order store subject
to strong updates, we model each heap cell as a pair of a dyn value
and its associated type refinement. An update to a heap cell updates
both the value and the associated type. Second, while it is possible
to model the heap entirely within F? as a two-dimensional finite
map from locations and field names to heap cells, this method
is quite poorly suited to automated reasoning. Instead, we aim to
rely on Z3’s efficient theories of functional arrays to model the
heap. For this, we exploit an F? feature that allows embedding
functions (whether interpreted or not) into the refinement logic.
In our case, we embed functions corresponding to the select and
update functions of Z3’s array theory. As a simplifying assumption,
at this stage of our work we require that JavaScript programs never
mutate an object’s prototype chain after the object has been created.
We discuss this further in §6.1.

Figure 3 shows our internal model of the heap. MLjs programs
that are clients of this library cannot directly manipulate any of
the programmatic elements of this model (e.g., directly call the
function selcell to access a heap cell). In the next subsection, we
present a monadic public API exposed to client programs.

Our model starts with the definition of heapcell, in effect,
an existential package of a type ’a and dyn value d such that

1 type heapcell = Cell : ’a::E →d:dyn{(TypeOf d)=’a}→heapcell
2 (∗ Selecting and updating all the fields of an object ∗)
3 logic type fields
4 logic val SelObj : heap→dyn→option fields
5 logic val UpdObj : heap→dyn→fields→heap
6 logic val Emp : fields
7 (∗ Selecting a single field ∗)
8 type fn = string (∗ field names ∗)
9 logic val SelCell : heap→dyn→ fn→option heapcell

10 private val selcell : h:heap→o:dyn{(TypeOf o)=object}→ f:fn
11 →o:option heapcell{o=SelCell h o f}
12 (∗ Updating a single field ∗)
13 logic val UpdCell : ’a::E →heap→dyn→ fn→dyn→heap
14 private val updcell : ’a::E →h:heap→o:dyn{(TypeOf o)=object}
15 → f:fn→d:dyn{(TypeOf d)=’a}→h’:heap{h’=(UpdCell ’a h o f d)}
16
17 (∗ Derived constructs ∗)
18 (∗ Selecting the value in a heap cell ∗)
19 logic val Select : heap→ loc→ fn→dyn
20 assume ∀h l f v. (SelCell h l f=Some (Cell v))⇒ (Select h l f = v)
21 assume ∀h l f. (SelCell h l f=None)⇒ (Select h l f = Undef)
22 (∗ Selecting the type in a heap cell ∗)
23 logic type SelectT :: heap⇒ loc⇒ fn⇒ E
24 assume ∀h l f ’a. (SelCell h l f=Some (Cell ’a ))⇒ (SelectT h l f = ’a)
25 assume ∀h l f. (SelCell h l f=None)⇒ (SelectT h l f = undef)
26 (∗ Checking if a heap cell is allocated ∗)
27 type HasField = fun h l f⇒ (SelCell h l f)=(Some )
28 (∗ Checking if an object is present in the heap ∗)
29 type InDom = fun h d⇒ ((SelObj h d) <> None)
30 (∗ Allocating a new object ∗)
31 logic val New : heap→dyn→option fields→heap
32 assume ∀h d f. not (InDom h d)⇒ (New h d (Some f))=(UpdObj h d f)
33 val alloc: proto:dyn{(TypeOf proto)=object && InDom h proto}
34 →h:heap→ (x:dyn ∗ h’:heap{h’=New h d (SelectObj h proto)})

Figure 3. An internal model of the JavaScript heap

(TypeOf d)=’a. The whole heap is essentially a two-dimensional
array of heapcell, where the array is indexed first by objects and
then field names. We start by defining an abstract type fields, which
is interpreted in the logic as a partial map from fieldnames (fn) to
heapcells. The function SelObj h d returns all the fields (if a set of
fields is present) of the object d, while UpdObj h d f updates object
d’s fields with f—both these functions are interpreted via the stan-
dard select/update axioms of functional arrays. The value Emp is
the empty set of fields. The logic keyword preceding each of these
definitions indicates that these are only usable in F?’s refinement
logic, not in the executable part of the program—MLjs programs
never access all the fields of an object en masse.

At lines 7–15 we show interpreted functions in Z3, SelCell and
UpdCell, to select and update individual heap cells. As with SelObj
and UpdObj, these functions are not available in executable code.
However, real JavaScript programs must, of course, be able to
actually read from and write to heap cells. For this, we provide two
function symbols, selcell and updcell, whose implementation can be
in native code, and assert that the specification of these primitive
operations corresponds to SelCell and UpdCell operations. Since
these functions will be called from MLjs programs and our library,
we give them refined types to restrict their usage. For example, both
selcell and updcell insist that they be called only with objects, not
arbitrary dyn-typed values.

Based on these primitives, we define several derived constructs
useful for writing specifications. The function Select selects just
the value part of a heap cell, while SelectT selects just the type
part. HasField is a derived predicate that checks if a heap cell is
allocated, while InDom checks if an object is present in the heap.



Finally, New is our specificational function for allocating a new
object in the heap. We assume an external implementation of an ob-
ject allocator (alloc) and require it to satisfy the signature shown at
line 33. Notice that alloc takes an object proto as an argument—all
the fields of the proto argument are copied directly to the newly al-
located object. This is different than in JavaScript, where prototype
fields are accessed via the indirection of a reference. As pointed
out in §1.3, this is a limitation of our current approach, which we
adopt to simplify our heap model. For our approach to be sound,
we require an object used as a prototype to be immutable—it is
easy to check this immutability condition within our framework.
To avoid cluttering the remainder of our presentation with this side
condition, we simply assume the existence of a function allocObject
which constructs a new object initialized with the fields of the de-
fault prototype object.prototype.

3.3 The public API of JSPrims

We now discuss functions in the public API of JSPrims that allow
safely reading and writing fields in the heap, and safely applying
dynamically-typed functions. In designing this API we had to bal-
ance two concerns. On the one hand, we want the API specification
to be strong enough so that well-typed MLjs clients are sure to
not have any runtime errors, e.g., they do not attempt to project a
field out of an integer value, or apply a non-function. Simultane-
ously, we want our specification to be weak enough that typical,
well-behaved MLjs programs can be successfully typechecked.

To ensure that we correctly balance these concerns, we carry
out two tasks. First, we provide verified implementations (in F?) of
each of the functions in our public API. Thus, from the soundness
of F? we have a proof that well-typed clients of JSPrims indeed do
not have the assertion failures we forbid. Secondly, while a formal
proof demonstrating that our specification is the weakest would be
desirable, for the moment, we simply validate empirically that our
specification is sufficiently weak, i.e., we show that several typical
programs can be checked against this API.
Safe field selection. Informally, for o:dyn and f:fn, the term select o f
corresponds to the JavaScript field lookup operation o[f]. More
precisely, the specification of select o f below (lines 1–4) shows
that it is a computation which produces a dyn value, and satisfies
any post-condition ’Post when run in an input heap h satisfying
the pre-condition at lines 2–3 (“=⇒” stands for implication). The
caller must prove three properties. The first requires that the type
of o be object, since projecting a field from, say, an int-typed
value is a JavaScript error. The second ensures that field o[f]

exists. If the field does not exist, JavaScript semantics permits
returning the undefined value, which is, strictly speaking, not an
error condition. However, checking for the absence of unexpected
undefined values in a JavaScript program is generally considered
a good idea (Crockford 2008), so we check for it here. Finally,
the client is required to prove the predicate ’Post (Select h o f) h
(indicating that select indeed returns the contents of the o[f] field
and leaves the heap unchanged), under the assumption that the
returned value (Select h o f) has the type associated with it in its
heapcell.

Signature and implementation of field selection
1 type SelTX o f ’Post h =
2 ((TypeOf o)=object && (HasField h o f) &&
3 ((TypeOf (Select h o f))=(SelectT h o f) =⇒ ’Post (Select h o f) h))
4 val select: o:dyn→ f:fn→DST dyn (SelTX o f)
5
6 let select o f ’Post h = match o with
7 | Undef | Str | Int | Fun →assert False
8 | Obj → (match selcell h o f with Some(Cell v)→v,h
9 | None→assert False)

We also show the implementation of select, to be typechecked
against its specification. F? types each pattern branch under the
assumption that the scrutinee o is equal to the pattern. Thus, the
first branch is typed under the assumption that o = Undef, or o=Str ,
etc. Given our pre-condition that (TypeOf o)=object, we reach a
contradiction, i.e., we are able to prove False. In the last case, we
have the assumption that o=Obj , and from the post-condition of
selcell we have that the scrutinee in the nested match construct is
equal to SelCell h o f. From our pre-condition HasField h o f, we can
prove that the scrutinee is not equal to None, and thus, only the first
case of the nested match is reachable. In this case, we return the
selected value v and the unchanged heap h. The whole function is
verified automatically against its specification.
Safe field update. Informally, for o:dyn, f:fn, v:dyn, the term
update o f v corresponds the the JavaScript field assignment o[f]
= v. The specification of update has a similar form to that of select,
and is shown in the listing below. The caller is required, first, to
prove that o is an object. Second, o must be in the domain of the
current heap, although it may not have the field f yet—JavaScript
permits adding fields to an object “on the fly”. Finally, the caller has
to prove the post-condition assuming that update o f v returns Undef
and that the heap is updated appropriately. The implementation of
update, also shown below, is straightforward.

Signature and implementation of field update
1 type UpdTX o f v ’Post h =
2 (TypeOf o)=object && (InDom h o) &&
3 ’Post Undef (Update (TypeOf v) h o f v))
4 val update: o:dyn→ f:fn→v:dyn→DST dyn (UpdTx o f v)
5
6 let update o f v ’Post h = match v with
7 | Undef→ (Undef, updcell undef h o f v)
8 | Str → (Undef, updcell string h o f v)
9 | Int → (Undef, updcell int h o f v)

10 | Obj → (Undef, updcell obj h o f v)
11 | Fun ’Pre → (Undef, updcell (Function ’Pre) h o f v)

Safe function application. Informally, for f:dyn, this:dyn, args:dyn,
the term apply f this args corresponds (roughly) to the JavaScript
construct this.f(args). As in the other cases, our goal is to ensure
that function applications in MLjs (and hence in JavaScript) do
not cause errors. There are two things that could potentially go
wrong. First, f may not be a function—it is an error in JavaScript
to apply, say, an integer. Second, f’s pre-condition may not be
satisfied. Addressing both these concerns, we show the type and
implementation of apply below.

Signature and implementation of function application
1 logic type Unfun :: E⇒ dyn⇒ dyn⇒ (dyn⇒ heap⇒ E )⇒ heap⇒ E
2 assume ∀’Tx. Unfun (Function ’Tx) = ’Tx
3 assume ∀’a. ’a <> (Function )⇒ (Unfun ’a)=(fun ⇒ False)
4 val apply: f:dyn→this:dyn→args:dyn
5 →DST dyn (Unfun (TypeOf f) args this)
6
7 let apply f this args ’Post h = match f with
8 | Undef | Str | Int | Obj →assert False
9 | Fun ’Tx fn→ fn this args ’Post h

Intuitively, if we can ensure that (TypeOf f)=Function ’Tx for
some transformer ’Tx, then we can rule out the first kind of error
(i.e., f is guaranteed to be a function). Then, to enforce f’s pre-
condition we can simply apply the predicate transformer to the
arguments, the post-condition, and the heap to compute the pre-
condition, i.e., we require ’Tx args this ’Post h.

Stating these requirements in a form amenable to easy prov-
ing takes a little work. First, (lines 1–3) we define a type func-
tion Unfun from arbitrary E-types to types that represent predicate



transformers. The interpretation of this function (the two assumes)
shows that when applied to a type of the form Function ’Tx,
Unfun simply projects out the transformer ’Tx. Otherwise, Unfun
returns the False predicate. Using Unfun, the specification of
apply is easy: the predicate transformer of apply f this args is just
Unfun (TypeOf f) args this. If f, the value being applied, can be
proved to be a function, then the behavior of apply is just as if
f were applied; otherwise the pre-condition of apply f this args is
unsatisfiable.

The implementation of apply is straightforward. When f is not a
function, Unfun (TypeOf f) gives us the False pre-condition, which
suffices to show that the first case is unreachable. In the second
case, we have the pre-condition of fn among our hypotheses, so we
can again prove the goal. Now, proving these goals directly using
Z3, a first-order SMT solver, is infeasible—it does not understand
predicate transformers. However, a novel encoding of F? verifica-
tion problems in Z3 allows these higher-order problems to be com-
piled into a set of first-order problems which Z3 can handle. We
describe this encoding in detail in §5.

4. Generating verification conditions
We employ a general-purpose VCGen designed for ML programs
to produce proof obligation for MLjs programs. A full descrip-
tion of VCGen is out of scope for this paper. Schlesinger and
Swamy (2011) formalize VCGen as a backwards style weakest pre-
condition calculus for higher-order stateful programs. We briefly
recapitulate their development here, and illustrate the use of VC-
Gen on MLjs programs using a few examples.

VCGen is formalized as a two-pass type inference algorithm for
ML programs. The first pass is a standard Hindley-Milner (HM)
typing phase, and the second pass (the one of main interest), relies
on the HM typing to compute a more precise type for a program. In
practice (as in our implementation) both phases can be interleaved.

The main judgment of VCGen is written Γ ` {φ}e : t {ψ} e.
It states that in a typing context Γ, given a post-condition ψ , a
predicate of kind t⇒ heap⇒ E , an ML expression e can be given
the type t under the pre-condition φ , a predicate of kind heap⇒ E .
The judgment also includes an elaboration phase: the term e is an
F? expression, the elaboration of e into F?, where the elaboration
simply makes explicit all type arguments, and elaborates all non-
generalized let-bindings into monadic bindings using the bindST
combinator of §2. A related judgment for values takes the form
Γ ` v : t v, stating that an ML value v is well-typed in the context
Γ at type t and is elaborated to an F? value v.

The main soundness theorem associated with VCGen states that
if Γ ` {φ}e : t {ψ} e, then in a suitably translated context, the
F? expression e can be given the type ST phi t psi, the type of
the Hoare state monad, where phi, t, and psi are translations of
the corresponding types φ , t, and ψ . A similar result for values
states that if Γ ` v : t  v, then v is well-typed in F? at a type t
corresponding to t. From the soundness of F?, we conclude that the
pre-condition computed by VCGen is sufficient for the absence of
failing assertions.

4.1 VCGen in action

We use the MLjs program in Figure 1 to illustrate the behav-
ior of VCGen. The general syntactic shape of the program is
let foo = v in e. We start by illustrating the type inferred for foo (be-
low), where each line is a triple of the form {pre}e {post}, showing
the Hoare triple inferred for the expression e at each line.

Starting from line 10, we compute a pre-condition for the en-
tire function with respect to a symbolic post-condition, a post-
condition variable ’Post. Computing the pre-condition at each state
is straightforward—we just apply the predicate transformer asso-
ciated with the expression to the post-condition of the triple. For

the update function, we just apply UpdTX and compute the pre-
condition φ1 at line 8. When traversing a let-binding, we close the
post-condition being “pushed through” by λ -binding the let-bound
name (as at lines 6, 4, and 2).

Deriving a type for a function
1 let foo this args : DST dyn ((fun args this ’Post ⇒ φ4) args this) =
2 {φ4 =SelTX args ”0” (fun x ⇒ φ3)}
3 let x = select args "0" in
4 {φ3 =SelTX x ”f” (fun y ⇒ φ2)}
5 let y = select x "f" in
6 {φ2 =(fun z ⇒ φ1) (y + 1)}
7 let z = plus y (Int 1) in
8 {φ1=UpdTX this ”g” z ’Post}
9 update this "g" z {’Post}

10 {’Post}

Proceeding in this manner, we reach the top of the function
body, having inferred the pre-condition φ4. To give a type to foo,
we generalize over the post-condition variable ’Post, and infer the
type shown at line 1. The type fun args this ’Post⇒ φ4 is now a
closed term precisely capturing the semantics of foo as a predicate
transformer.

Continuing on through our example, we have the derivation
shown below (eliding some parts).
A derivation including a function application

1 let foo this args : DST dyn (FooTX args this) = ... in
2 {φ7 =(fun f h ⇒ (TypeOf f)=(Function FooTX) =⇒ (fun ffun ⇒ φ6) f h)

3 (Fun foo)}
4 let ffun = (Fun foo) in
5 {φ6=UpdTX global ”foo” ffun (fun ⇒ φ5)}
6 let = update global "foo" ffun in
7 {φ5 =ArgsTX (fun args ⇒ φ4)} (∗ for some ArgsTX ∗)
8 let args = ... in
9 {φ4 =SelTX global ”foo” (fun f ⇒ φ3)}

10 let f = select global "foo" in
11 {φ3 = Unfun(TypeOf f) args global (fun ⇒ φ2)}
12 let = apply f global args in
13 {φ2 =(fun j h ⇒ (TypeOf j)=int =⇒ (fun i ⇒ φ1) j h) (Int 17)}
14 let i = (Int 17) in
15 {φ1=UpdTX global ”foo” i ’Post}
16 update global "foo" i
17 {’Post}

We start at the bottom with a symbolic post-condition ’Post. The
basic structure of the derivation is as before—we call out two inter-
esting elements. Consider the triples at lines 2–5 and at lines 13–
15. Both of these triples have the same structure, and show how we
handle the refinement formulas introduced by the constructors of
the dyn type (for that matter, VCGen handles the refinements of all
pure functions and constructors uniformly). Consider ffun at line 2:
it has the type d:dyn{(TypeOf d)=Function FooTX}, where FooTX is
the predicate transformer inferred for foo. The post-condition at that
point is a predicate on ffun (i.e., fun ffun⇒ φ6). The pre-condition
we infer guards φ6 with an implication allowing us to assume the re-
finement formula (TypeOf ffun)=Function FooTX when proving the
post-condition. In a similar way, at line 13, we may assume that
(TypeOf i)=int when proving the goal φ1. Thus, the refinements of
dyn prove useful in discharging a proof obligation.

The other interesting element is the triple at lines 11–13. Struc-
turally, this triple is no different than any of the others—we simply
apply the predicate transformer for apply. But, notice that the in-
ferred pre-condition φ3 itself contains a function over a predicate
transformer—getting Z3 to handle such verification conditions re-
quires some ingenuity, which we describe shortly (§5).

Having generated the pre-condition φ7 for the whole program,
a predicate (of kind heap⇒ E ) on the initial heap, we first in-
stantiate the symbolic post-condition ’Post to the trivial predi-



cate fun ⇒ True, i.e., we obtain φ = φ7[(fun ⇒ True)/’Post],
which is also a predicate of kind heap⇒ E . Next, we apply φ to
a variable h0, bound in the initial typing context Γ0, which in-
cludes the definitions and assumptions in the JSPrims library, e.g.,
the definition of the dyn type and the assumptions about Unfun,
etc. Γ0 also includes assumptions about the initial heap, e.g., that
it contains the global object—call the specification of the initial
heap InitialHeap :: heap⇒ E . In §6 we show a detailed definition
of the InitialHeap predicate, including a specification of the DOM
API, which is accessible via the document field of the global ob-
ject. Our verification goal then is to show that in the context Γ0
the formula φ h0 is derivable, or, equivalently, that the context
Γ0 extended with the assumption ¬(φ h0) is unsatisfiable. More
abstractly, given an MLjs program e, we aim to derive the triple
{InitialHeap}e {fun ⇒ True}—if we succeed, we have proven that
e executes without failing assertions.

5. Solving verification conditions
Given an initial context Γ0, our goal is to prove (automatically)
that Γ0,¬(φ h0) is unsatisfiable. This problem is well-understood
when Γ0 and φ h0 are first-order formulas, e.g., a range of pro-
gram verification tools, including F?, rely on efficient SMT solvers
which have heuristic support for reasoning about quantified for-
mulas to successfully discharge first-order proof obligations. How-
ever, the proof obligations produced for MLjs programs are not
always first-order formulas. While some experimental automated
solvers for certain higher-order logics are being developed (e.g.,
Mona (Henriksen et al. 1995)), these remain inefficient, and pro-
vide little support for reasoning about the theories we need for
MLjs, e.g., functional arrays, integers, etc. In this section, we show
how to encode the proof obligations for MLjs programs in a first-
order theory amenable to automated proving via Z3.

5.1 Incremental compilation of higher-order queries

We have seen two examples of higher-order formulas so far.
The first case arose when verifying the JSPrims library, in par-
ticular in the implementation of apply in §3.3. There, in the
first branch of the match (at line 8), we had to prove that a
context Γ1 = Γ0, f:dyn,args:dyn, this:dyn,h:heap,(f=Undef ∨ . . . ∨
f=Obj ),Unfun(TypeOf f) args this ’Post h is unsatisfiable. A sim-
ilar problem arises when verifying line 9 of apply, except, there,
we have to prove the unsatisfiability of Γ2 = Γ0, . . . , f=Fun ’Tx fn,
TypeOf (Fun ’Tx fn)=Function ’Tx, Unfun(TypeOf f) args this ’Post h,
¬’Tx args this ’Post h. The other case is when verifying the pro-
gram of Figure 1, where our goal is (roughly) to show Γ3 = Γ0,
¬((TypeOf f = Function FooTX) =⇒ Unfun (TypeOf f) args global
(fun ⇒ φ2)) is unsatisfiable. Our idea is to implement a query
compiler that translates higher-order problems to a series of first-
order problems that Z3 can understand. We use the problem Γ3 to
illustrate—the same strategy applies to Γ1 and Γ2.

Rather than present Γ3 directly to Z3, our query compiler im-
plements a simple, incremental, first-order solving strategy outside
of Z3. There are five steps in our query compiler.
Step 0: Handling a first-order theory. If the query is first-order,
then prove it unsatisfiable in Z3. If this fails, reject the program.
Step 1: Extract a first-order partial theory. The query com-
piler begins by identifying a first-order subset of the theory. In
our example, this means translating Γ3 into Γ′3 = Γ0, ((TypeOf f)=
Function FooTx), leaving a residue ¬(Unfun (TypeOf f) args global
(fun ⇒ φ2)), a higher-order formula to be compiled later. The the-
ory Γ′3 is first-order (provided Γ0 is, which it is). The goal is to find
a way to evaluate the Unfun (TypeOf f) (the predicate transformer
in the residue) into some concrete predicate transformer.

Step 2: Extract a candidate witness from a model for the partial
theory. Next, we present the first-order partial theory to Z3 and
attempt to prove this theory satisfiable. If Z3 decides that the partial
theory is unsatisfiable, then we are done: clearly, via weakening,
the whole context is also unsatisfiable. If we have a quantifier free
theory, the only other possibility is for Z3 to decide that the theory
is satisfiable, and in this case Z3 produces a model M. If the theory
has quantifiers, Z3 may reply “unknown”, but, even in this case, Z3
produces a partial model—we discuss the problem of generating
models for theories with quantifiers in further detail in §5.2. Given
the model M, we ask Z3 to evaluate the guard of the residue—in our
example, this is (Unfun (TypeOf f))—and we obtain a type Tx which
is a candidate predicate transformer that we can use to compile the
residue of the query.
Step 3: Confirm the candidate witness. Of course, our partial
theory may have many models, and our candidate Tx may not be a
valid solution. Our next step is to prove that (Unfun (TypeOf f))=Tx
is true in all models, i.e., we ask Z3 to prove the unsatisfiability of
Γ′3,¬((Unfun (TypeOf f))=Tx). If this step fails, then we can proceed
no further and our query compiler rejects the entire query saying
that it was not able to prove the theory’s unsatisfiability. However,
if this step succeeds, we have confirmed that Tx is a valid witness
and can move to step 4. In our example, we have Tx=FooTX.
Step 4: Compile the rest of the query using the witness. Using our
valid witness, we can compile the residue further. In our example,
we now have to prove that ¬FooTX args global (fun ⇒ φ2) is un-
satisfiable in the theory Γ′3. But, FooTX is a concrete transformer
fun args this ’Post⇒ φ4, and our goal now contains a redex which
can be reduced via several β -reductions to a first-order formula,
with potentially some higher-order residues contained within. So,
we iterate the process and go back to step 0.
Termination of the query compiler. The satisfiability problem for
a first-order theory is undecidable. So, for many interesting pro-
grams, our query compiler may diverge, because Z3 may diverge.
However, one may also be concerned that even on an effectively
propositional theory (for which Z3 is complete), our query com-
piler introduces non-termination. While we do not prove formally
that our query compiler converges, we implement a unification
based heuristic to detect potential non-termination of the query
compiler. We leave a formal proof of the correctness of this heuris-
tic to future work.

5.2 Model generation and theories with quantifiers

Verifying typical MLjs programs requires reasoning about complex
data structures, in particular, the DOM. The DOM is a tree-shaped
data structure and providing the specification for the DOM (as we
will see shortly) involves the use of an inductive predicate, which in
turn requires the use of quantifiers. Since our verification procedure
requires Z3 to produce models in order to resolve predicate trans-
formers, quantifiers can be a problem—Z3’s ability to find partial
models for problems involving quantifiers is limited.

The listing overleaf shows a partial definition of our InitialHeap
predicate (line 13), including a small fragment of our DOM spec-
ification. It says that the initial heap contains an object elt corre-
sponding to the JavaScript access path document.body, and that elt
satisfies the predicate EltTyping h0 elt, meaning that elt is a DOM
element in heap h0.

The predicate EltTyping, defined at line 5, states that elt is
an object, that it has a field getFirstChild, and that this field is a
function whose specification is given by the predicate transformer
at lines 10–11. Informally, getFirstChild expects its first argument
(the implicit this pointer) to be a DOM element e, and, if e is not
a leaf node, it returns another DOM element (otherwise returning
undefined).



Capturing this specification involves the use of an inductive
predicate. We do this using the predicate IsElt, and then providing
two assumptions (at the bottom of the display) giving an interpre-
tation to IsElt. The assumption IsElt trans states that IsElt is tran-
sitive in its heap argument (if the relevant fields of the element elt
have not changed), and IsElt typ expands IsElt back into EltTyping.
To control how Z3 uses these quantified assumptions, we provide
patterns, which serve to guide E-matching, Z3’s quantifier instanti-
ation algorithm.

Specifying the DOM (partial) using inductive predicates
1 type ObjField h o f = HasField h o f && TypeOf (Select h o f)=object
2 && InDom h (Select h o f)
3
4 type IsElt :: heap⇒ dyn⇒ E
5 type EltTyping h elt =
6 TypeOf elt = object && ... && HasField h elt "text" &&
7 TypeOf (Select h elt "text")=string &&
8 HasField h elt "getFirstChild" &&
9 TypeOf (Select h elt "getFirstChild") =

10 Function (fun args this ’Post h’⇒ IsElt h this &&
11 ∀child. child=Undef || IsElt h’ child =⇒ ’Post child h’)
12
13 type InitialHeap h0 = TypeOf global = object && ... &&
14 ObjField h0 global "document" &&
15 ObjField h0 (Select h0 global "document") "body" &&
16 EltTyping h0 (Select h0 (Select h0 global "document") "body")
17
18 assume IsElt trans:∀ h1 h2 x.{:pattern (IsElt h1 x); (SelObj h2 x)}
19 (IsElt h1 x &&
20 (Select h1 x "text")=(Select h2 x "text") && . . .
21 (Select h1 x "getFirstChild")=(Select h2 x "getFirstChild"))
22 =⇒ IsElt h2 x
23 assume IsElt typ:∀ h x.{:pattern (IsElt h x)} IsElt h x⇒ EltTyping h x

Now, consider the following JavaScript program and its MLjs
counterpart. Proving the function call at line 6 requires construct-
ing a model of the heap at that point and extracting a predicate
transformer for select child "getFirstChild". This requires getting
Z3 to instantiate the quantified assumptions, and to reason that
since IsElt h’ child (for the heap h’ at that point), that child has a
"getFirstChild" field, and to use EltTyping to return the expected
predicate transformer as a candidate (i.e., step 2 in our query com-
piler), and then to confirm this candidate in step 3.

A DOM-manipulating JavaScript program and its translation
1 var child = document.body.getFirstChild();
2 if (child !== undefined) { child.getFirstChild() }

1 let body = select (select global "document") "body" in
2 update global "child"
3 (apply (select body "getFirstChild") body emptyObj);
4 if (select global "child" <> Undef)
5 then let child = select global "child" in
6 apply (select child "getFirstChild") child emptyObj
7 else ...

For simple programs such as this one, the verification proceeds
without a hitch. However, as programs get more complex, Z3 has
trouble producing a model in a reasonable amount of time (on the
order of tens of minutes for examples a dozen lines long). Noting
this kind of performance, we feared our approach was stillborn.

However, all is not lost: the expensive step in our query compi-
lation procedure is, by far, step 2. However, step 2 is only necessary
to produce a candidate witness. If we can efficiently guess a candi-
date by some other means, then we can bypass step 2, and use step
3 directly to confirm our guess—confirming the candidate requires
the use of an unsat query, and on such queries, Z3 is typically

very efficient (on the order of a few seconds, rather than several
minutes). If the guess is incorrect, we fall back on step 2, but good
guesses provide us with a fast path through query compilation.

The question then becomes how to produce good guesses. Re-
call that we require a witness for the predicate transformer at each
function call in an JavaScript program. If an efficient (but, poten-
tially unsound) pointer analysis of JavaScript source programs can
produce a may-alias set for the function call, this information can
be transmitted through the JS2ML translation.

We have implemented a very simple version of such an anal-
ysis and seen some success—for JavaScript source expressions
that appear syntactically to be a call to a DOM function (like
getFirstChild), our translation emits a bit of metadata (just the
name of the function). This is used by our query compiler to make
a good guess for a candidate type, bypassing step 2 and making
verification tractable again. With a more sophisticated pointer anal-
ysis, our translation could convey many more such guesses, ideally
bypassing step 2 in the majority of cases and improving verifica-
tion times substantially. Next we discuss this and other aspects of
our translation, and the verification of several examples.

6. Implementation and evaluation
This section presents an empirical evaluation of our work. We ap-
ply our tool chain to verify the runtime safety of JavaScript web-
browser extensions. All the major web browsers provide support for
JavaScript extensions, which can provide a range of features for an
enhanced browsing experience. Browser extensions have been the
subject of some recent study, both because of their popularity, and
because of the security and reliability concerns they raise (Band-
hakavi et al. 2010; Barth et al. 2010; Guha et al. 2011). Exten-
sions are executed on every page a user visits, and runtime errors
caused by extensions can compromise the integrity of the entire
browser platform. Thus, a methodology to prove extensions (and
other JavaScript programs) free of runtime errors is of considerable
practical value.

We report here on the verification of three browser extensions
for the Google Chrome web browser. These extensions are based
on extensions that we studied in prior work (Guha et al. 2011). We
prove each of these extensions free of runtime errors, with one ma-
jor caveat: as mentioned in the Introduction, we assume a sequen-
tial execution model for JavaScript, rather than the asynchronous
model that these extensions employ in practice. A lesser caveat is
that we provide extensions with an iterator-based interface to work
with collections of objects in a safe manner. This differs from the
standard DOM API which provides collections of objects as arrays
encoded as dictionaries. We expect to handle the array idioms di-
rectly in the future.

We describe the verification task for each of our examples in
detail. But, first, we briefly describe some salient points of our
JS2ML implementation.

6.1 Translating JavaScript to ML

The λ JS approach to specifying the semantics of JavaScript is
attractive. By desugaring JavaScript’s non-standard constructs into
the familiar constructs of a Scheme-like programming language,
λ JS makes it possible to apply many kinds of standard program
analyses to JavaScript programs. However, after a summer spent
by the second author working with the λ JS tool, and trying to get
it to emit well-typed ML code, we decided to implement a tool
resembling λ JS, i.e., JS2ML, from scratch. Our main difficulty with
λ JS was its brittle front-end: parsing JavaScript is not easy (mainly
because of its unusual semi-colon and off-side rule), and λ JS failed
to successfully parse many of the programs we were interested in.

Following the main idea of λ JS, we implemented JS2ML in
a mixture of C# and F#, utilizing a front-end for parsing and



desugaring JavaScript provided as part of Gatekeeper (Guarnieri
and Livshits 2009), a JavaScript analysis framework. Gatekeeper
provides many facilities for JavaScript analysis which we have yet
to exploit, e.g., it implements a Datalog-based pointer analysis for
JavaScript, which we anticipate could be used to generate the hints
to our query compiler described previously.

Aside from the front-end, and the hints inserted by JS2ML, we
describe the principal differences between JS2ML and λ JS below.
−The output of JS2ML is typed whereas the output of λ JS is
untyped. JS2ML inserts the constructors of dyn such as Int and
Fun throughout the translation. JS2ML translates select, update,
and function application in JavaScript programs to calls of the
corresponding JSPrims APIs. In contrast, λ JS relies on primi-
tive dynamically-typed operations on references and functions in
Scheme.
−JS2ML translates locals to allocated objects on the heap whereas
λ JS locals are not objects. Our object-based locals makes our heap
model more uniform.
−JS2ML has a simple annotation language for stating loop in-
variants. However, the support for annotations is very primitive at
present—we plan to improve on this in the future.
−Guha et al. check the accuracy of their tool against a large corpus
of benchmarks, showing the output of programs under the λ JS
semantics was identical to the original JavaScript. We have not yet
tested JS2ML at a similar scale, although we plan to in the future.

6.2 Example 1: HoverMagnifier
Our first extension is HoverMagnifier, an accessibility extension:
it magnifies the text under the cursor, presumably to assist a vi-
sually impaired user. The core interface of HoverMagnifier with a
web page is implemented in 27 lines of JavaScript. We verified this
program for the absence of runtime errors, in about 90 seconds. In
doing so, our query compiler emitted 86 queries to Z3, including
resolving 6 function calls by generating Z3 models (which domi-
nated the verification time).

A key part of its code is shown below—it involves the manipu-
lation of a collection of DOM elements. At line 2 it calls the DOM
function getElementsByTagName to get all the <body> elements in
a web page. Line 3 gets the first element in the result set. Then, it
checks if the body is undefined and line 6 sets an event handler,
magnify, to be called whenever the user’s mouse moves—we elide
the definition of magnify.

A fragment of HoverMagnifier
1 function magnify(evt) { ... }
2 var elts = document.getElementsByTagName("body");
3 var body = elts.Next();
4 if (body !== undefined)
5 {
6 body.onmousemove = function (evt){magnify(evt);};
7 body.onmousemove(dummyEv) //added for verif. harness
8 }

Setting up a verification harness for such a program involves
two main elements. First, as mentioned earlier, we consider closed
programs under a sequential execution model. So, we need some
“driver” code to ensure that all the relevant parts of the program
are exercised. For example, we add the code at line 7 to mock the
firing of a mouse-move event, so that the code in magnify becomes
reachable. Without this, our verification tool would infer a weakest
pre-condition for magnify, but since no call to it appears in the
program, the pre-condition would be trivially satisfied.

More substantially, we have to provide specifications for all
the APIs used by the program. For our extensions, this API is
principally the DOM. We have already seen a small fragment of

our DOM specification in §5.2—we elaborate on that specification
here. For each kind of DOM concept (document, element, style,
etc.), we define a corresponding F? type—a predicate stating that
an object is an instance of the concept. For example, for element,
we have already seen the predicate EltTyping h elt in §5.2, meaning
that elt is an element in heap h.

The display below shows the predicate DocTyping, a partial
specification for the document object (line 6). It states that the ob-
ject doc contains a function-typed field "getElementsByTagName".
The pre-condition for this function requires that it be called with
its this argument set to the doc object itself. All JavaScript func-
tions receive their enclosing objects as their this parameter. How-
ever, since functions are first-class and can be stored within other
objects, statically predicting the this pointer of a function is non-
trivial. For example, in the following program, the final function
call receives the object o as the this parameter: o.f = document

.getElementsByTagName; o.f(). This can be problematic, and, in
the case of the DOM, leads to a runtime error. We rule out this kind
of error by requiring that every call to getElementsByTagName must
pass a this parameter equal to the document object doc.

The InitialHeap predicate, with a type for the document object
1 type Enumerable ’P h d = TypeOf d = object && InDom h d &&
2 HasField h d "Next" && (TypeOf (Select h d "Next")) =
3 (Function (fun args this ’Post h’⇒ this = d &&
4 ∀(x:dyn). (x=Undef || ’P h’ x)⇒ ’Post x h’))
5
6 type DocTyping h doc = HasField h doc "getElementsByTagName"
7 && . . . && (TypeOf (Select h doc "getElementsByTagName")) =
8 (Function (fun args this ’Post h1⇒
9 (this = doc && SingletonString h1 args &&

10 (∀ x. Enumerable IsElt h1 x⇒ ’Post x h1))))
11
12 val global : dyn
13 type InitialHeap h0 = TypeOf global = object && ... &&
14 ObjField h0 global "document" &&
15 DocTyping h (Select h global "document")

The pre-condition of getElementsByTagName also requires that
its arguments object args contain a single string field (the predi-
cate SingletonString, elided here for brevity). The post-condition
of getElementsByTagName is captured by line 10. It states that the
function does not change the heap, and that the object x returned
satisfies the predicate Enumerable IsElt h1 x.

The predicate Enumerable is shown at line 1. It is parameterized
by a predicate ’P that applies to each of the elements in the collec-
tion. Enumerable collections are objects that have a function-typed
"Next" field which does not mutate the heap. The function either
returns Undef (if the collection is exhausted), or returns an value
satisfying the predicate ’P h’ x. As with other functions, "Next" ex-
pects its this pointer to be the enclosing collection.

Finally, we extend the InitialHeap predicate (shown first in §5.2)
to include the assumption about the document object.

6.3 Example 2: Facepalm
Our next example is Facepalm, an extension that helps build a
user’s address book by automatically recording the contact infor-
mation of a user’s friends as they browse Facebook. It is imple-
mented in 87 lines of JavaScript. Overall, verifying the entire ex-
tension took about 70 minutes. The verification time was dominated
by the time spent in Z3. Our query compiler asked about 1,300 Z3
queries, and requires producing models to resolve function calls
95 times. The latter dominated the Z3 time—so, a reduction in the
number of queries that require producing models (via better hints)
is likely to reduce the verification time substantially.

The main function of Facepalm is shown overleaf (start at
line 16). At a high level, this extension checks to see if the page



currently being viewed is a Facebook page (line 18). If the check
succeeds, it traverses the DOM structure of the page looking for
a specific fragment that mentions the name of the user’s friend
(line 19). A second traversal finds the friend’s contact and website
information (line 20). If this information is successfully found, the
extension logs it and saves it to the user’s address book maintained
on a third-party bookmarking service (line 24).

The main interest in verifying Facepalm is in verifying the two
DOM traversals, findName and findWebsite. Both of these involve
while-loops to iterate over the structure of the DOM. They do this
by eventually calling the function getPath, shown at line 1. The
loop in getPath iterates simultaneously over a list of integers (path
) as well as the DOM tree rooted at cur, where the integer in the
list indicates which sub-tree of cur to visit. Function getChild(n)

returns the nth child of an element.

The main function and a DOM traversal function in Facepalm
1 function getPath(root, p) {
2 var cur=root; var path=p;
3 // needs a loop invariant
4 while(path !== undefined &&
5 cur !== undefined) {
6 cur = cur.getChild(path.hd); //needs a hint
7 path = path.tl;
8 }
9 return cur;

10 }
11 function cons(a, rest) { return {hd:a; tl:rest}; }
12 function getWebsite(elt) { . . .
13 var path = cons(1,cons(0,cons(0,cons(0,undefined))));
14 return getPath(elt, path);
15 }
16 function start() {
17 var friendName, href;
18 if (document.domain === ’facebook.com’) {
19 friendName = findName();
20 href = findWebsite();
21 if (href) {
22 console.log("Website on " + href);
23 console.log("Name is " + friendName);
24 saveWebsite(friendName, href);
25 }}}

To verify this code, the programmer needs to supply a loop invari-
ant. Also, to make verification reasonably fast, our query compiler
needs a hint at line 6, which is easily provided automatically by our
front end. At the moment, JS2ML has only primitive support for
annotating JavaScript source with loop invariants and other speci-
fications. So, we describe the verification at the MLjs level.

We start by showing (in the next display) two combinators in
our JSPrims library used in the translation of while-loops. The sig-
nature of while below shows a function that takes three predicate
parameters, a loop guard, and a loop body. Its implementation iter-
ates the application of body so long as guard is true, and then returns
Undef. The interesting element is, of course, in its specification.

The first predicate parameter to while is ’Inv, an invariant on
the heap. The next two parameters are predicate transformers spec-
ifying the loop guard and body, respectively. While our verifica-
tion condition generator can infer an instantiation for ’TxGuard and
’TxBody, the loop invariant ’Inv has to be supplied by some other
means, e.g., manually.

Of course, ’Inv has to be an inductive invariant—the predicate
transformer for while states this as a pre-condition. At line 7, we
state that the invariant must hold on the initial heap. At line 8, we
say that the invariant must be inductive—this may take some care-
ful study to understand, since it makes heavy use of the composition
of predicate transformers. Informally, it states that for any heap h1
that satisfies the invariant, then if the loop guard executed in the

heap h1 returns true, then running the loop body re-establishes the
invariant ’Inv; otherwise, if the loop guard returns false, the invari-
ant ’Inv must be true again. The final condition (line 13) requires
that ’Inv be sufficient to establish any post-condition of the loop.

JSPrims combinators for while-loops and for getting the heap
1 val while: ’Inv :: heap⇒ E
2 → ’TxGuard::(bool⇒ heap⇒ E )⇒ heap⇒ E
3 → ’TxBody::(dyn⇒ heap⇒ E )⇒ heap⇒ E
4 →guard:(unit→DST bool ’TxGuard)
5 →body:(unit→DST dyn ’TxBody)
6 →DST dyn (fun ’Post h⇒
7 ’Inv h && (∗ Inv is initial ∗)
8 (∀ h1. ’Inv h1 (∗ Inv is inductive ∗)
9 =⇒ (’TxGuard

10 (fun v h2⇒ (v=true =⇒ ’TxBody (fun ⇒ ’Inv) h2)
11 && (v=false =⇒ ’Inv h2))
12 h1)) &&
13 (∀ h1. ’Inv h1 =⇒ ’Post Undef h1)) (∗ Inv implies Post ∗)
14
15 val get: unit→DST heap (fun ’Post h⇒ ’Post h h)

At line 15, we show the signature of get, a simple function that
returns the current heap as a value. As we will see, this is useful for
stating invariants.

Now, we return to analyzing getPath and seeing loop invariants
for clients of while in action. The next listing shows the transla-
tion3 of getPath to F? for verification. At lines 2–4, we initialize
the two local variables corresponding to cur and path in the source
program. The while loop is translated to a call to the while combi-
nator. The first three argument to while (at line 7) are shown in blue.
These are the predicate arguments—the first argument Inv locals h0
is provided by the programmer; the next two are wildcards ( )
whose instantiation is inferred by the verification condition gener-
ator. The fourth argument is the thunk representing the loop guard,
and the last argument is a thunk for the loop body.

Translation of getPath to MLjs
1 let getPath this args =
2 let locals = allocObject () in
3 update locals "cur" (select args "0");
4 update locals "path" (select args "1");
5
6 let h0 = get () in
7 let = while (Inv locals h0)

8 (fun ()→ (not ((select locals "path") = Undef)) &&
9 (not ((select locals "cur") = Undef)))

10 (fun ()→
11 let params = allocObject () in
12 let getChild = select (select locals "cur") "getChild" in
13 let hd = select (select locals "path") "hd" in
14 update params "0" hd;
15 update locals "cur" (apply getChild (select locals "cur") params);
16 update locals "path" (select (select locals "path") "tl")) in
17 select locals "cur"

The code of the loop guard is straightforward. The body allo-
cates an object params to pass arguments to the function getChild.
The parameters at the call on line 15 is a singleton integer contain-
ing the head of the list "path". We then update the locals "cur" and
"path" and iterate.

Intuitively, verifying this code for the absence of runtime errors
requires two properties: at each iteration, the "path" local either be
Undef, or must contain an integer hd field and also a tl field, while
the "cur" local must contain a DOM element (or be Undef). We can
state just this using the loop invariant shown in the next display.

3 We clean up the translated code a little, using better names for variables,
and removing two statements that are essentially no-ops



The invariant comes in two parts. First, at lines 2–14 we define
an inductive predicate IsList ’a h l, which states that in the heap h,
the value l is either Undef or a list of ’a-typed values. The style of
this inductive specification is similar to the specification we used
for IsElt in §5.2. The invariant itself Inv is defined at line 18. The
invariant is a ternary predicate relating an object holding the local
variables locs, the heap h0 at the start of the loop, to a heap h1,
which represents the heap at the beginning of each loop iteration.

The invariant for getPath

1 (∗ Typing polymorphic lists ∗)
2 type IsObject h o = TypeOf o=object && InDom h o
3 type IsList :: E⇒ heap⇒ dyn⇒ E
4 type ListTyping ’a h l =
5 (l=Undef ||
6 (IsObject h l &&
7 HasField h l "hd" && (TypeOf (Select h l "hd"))=’a &&
8 HasField h l "tl" && IsList ’a h (Select h l "tl")))
9 assume IsList Typing1:∀ ’a h d.{:pattern (IsList ’a h d)}

10 IsList ’a h d⇐⇒ ListTyping ’a h d
11 assume IsList trans:∀ ’a h1 h2 d.{:pattern (SelObj h2 d); (IsList h1 d)}
12 (IsList ’a h1 d &&
13 (Select h1 d "hd")=(Select h2 d "hd") &&
14 (Select h1 d "tl")=(Select h2 d "tl")) =⇒ IsList ’a h2 d
15
16 (∗ The loop invariant ∗)
17 type CutIsElt h d = IsObject h d && (IsObject h d =⇒ IsElt h d)
18 type Inv locs h0 h1 =
19 (SelObj h0 global)=(SelObj h1 global) &&
20 IsObject h1 locs &&
21 HasField h1 locs "path" &&
22 HasField h1 locs "cur" &&
23 IsList int h1 (Select h1 locs "path") &&
24 ((Select h1 locs "cur")=Undef || CutIsElt h1 (Select h1 locs "cur"))

The invariant states that the loop does not mutate the global
object at all (necessary to verify the remainder of the program after
the loop); that the locs object has a "path" and "cur" fields; that
the former is a list of integers; and that the latter is either Undef
or a DOM element. Stating and proving the last property required
an additional hint for Z3. Instead of simply writing IsElt, we had
to write CutIsElt, which provides Z3 with a lemma to prove first,
i.e., that the "cur" local contains an object, and using that lemma,
prove that it is a DOM element. The lemma helps guide the pattern-
based instantiation of the quantifiers needed to reason about the
IsElt predicate.

Clearly, writing such an invariant took considerable manual ef-
fort. This is unsurprising—verifying loops in a more well-behaved
language, say, C#, also requires writing invariants. Our work be-
gins to put JavaScript verification on a par with the verification
of these other languages. With more experience, we hope to dis-
cover JavaScript idioms that make writing loop invariants easier,
and further, to apply ideas ranging from abstract interpretation to
interpolants to automatically infer these invariants.

6.4 Example 3: Typograf
Our final example is Typograf, an extensions that formats text a
user enters in a web form. We show a small (simplified) fragment
of its code below.

Message passing with callbacks in Typograf
1 function captureText(elt, callback) {
2 if (elt.tagName === ’INPUT’){ callback({ text: elt.value }); }
3 }
4 function listener(request, callback) {
5 if (request.command === ’captureText’) {
6 captureText(document.activeElement, callback);
7 }}
8 chromeExtensionOnRequest.addListener(listener);

Typograf, like most Chrome extensions, is split into two parts,
content scripts which have direct access to a web page, and ex-
tension cores which access other resources. The two parts commu-
nicate through message passing. When Typograf’s content script,
receives a request from the extension core to capture text, it calls
captureText, which calls the callback function in the reqest (line 2).
At line 8, Typograf registers listener as an event handler with the
Chrome extension framework, by calling the function addListener.

We verified the content script for the absence of runtime errors.
This program has 28 lines of JavaScript, which we verified in
less than two minutes. This involved 102 queries of Z3, including
resolving 7 function calls by generating Z3 models (which, as in
the other cases, dominated the verification time).

Verifying this extension requires providing a model for addListener,
a third-order function—it receives a second-order function (captureText)
as an argument. As with HoverMagnifier, since we do not model
asynchrony, we require a sequential verification harness. Instead
of writing driver code to include a call, say, to listener, we give a
specification to addListener that, in effect, treats it as a function that
immediately call the function it receives as an argument.

A third-order specification for the Chrome API
1 type ChromeTyping h chrome =
2 IsObject h chrome &&
3 HasField h chrome "addListener" &&
4 (TypeOf (Select h chrome "addListener")) =
5 (Function (fun args this ’Post h’⇒
6 (∀ args’ h’’.
7 (h’’ = NewObj h’ args’ &&
8 IsObject h’’ args’ &&
9 HasField h’’ args’ "0" &&

10 HasField h’’ args’ "1" &&
11 IsObject h’’ (Select h’’ args’ "0") &&
12 HasField h’’ (Select h’’ args’ "0") "command" &&
13 TypeOf (Select h’’ args’ "1") =
14 (Function (fun ’Postcb hcb⇒ ’Postcb Undef hcb)))
15 =⇒ Unfun (TypeOf (Select h’ args "0")) args’ Undef ’Post h’’)))

The display above shows our (partial) specification of the
Chrome API. It states that it contains a function "addListener",
which expects a function as its first argument ((Select h’ args "0")
on the last line, i.e., listener, in our example). The specification
states that it calls listener immediately in a heap h’’ that differs
from the input heap in that it contains a new object args’ (line 7).
This arguments object args’ itself, in its zeroth field, contains an
object with a "command" field; and in its first field, contains another
function, the callback passed to listener. The callback in this case is
very simple—it is the constant Undef function—but clearly, it could
be given a more elaborate specification. Our verification methodol-
ogy generalizes naturally to functions of an arbitrary order.

7. Related Work
Our core verification methodology is connected to a long line of
literature of Hoare logic, as well as dependently typed program-
ming languages—we have discussed this connection already. Here,
we focus mainly on theories and analyses for dynamically typed
programming languages in general, including JavaScript.

There is a long tradition of aiming to equip dynamic languages
with a notion of static typing, starting perhaps with Henglein
(1994). Following that line of work, Henglein and Rehof (1995)
defined a translation from Scheme to ML by encoding Scheme
terms using the algebraic ML type dynamic. Our work is related
to this line in two regards. First, our JS2ML translation makes use
of a similar Scheme to ML translation (combined with λ JS, which
we have already discussed). Second, Henglein and Rehof were
also able to statically discover certain kinds of runtime errors in
Scheme programs via their translation to ML. Our methodology



also aims to statically detect errors in dynamically typed programs
via a translation into a statically typed language. Of course, because
of the richness of our target language, we are able to verify pro-
grams in a much more precise (and only semi-automated) manner.
Besides, we need not stop at simply proving runtime safety—our
methodology enables proofs of functional correctness.

There are many other systems for inferring or checking types for
dynamic languages—too many that covering all of them thoroughly
is impossible. We focus primarily on the prior works that rely on
a mechanism similar to ours, i.e., approaches based on dependent
typing. Dminor (Bierman et al. 2010) provides semantic subtyp-
ing for a first-order dynamically typed language. Tobin-Hochstadt
and Felleisen (2010) provide refinement types for a pure subset of
Scheme. System D (Chugh et al. 2012) is a refinement type sys-
tem for a pure higher-order language with dictionary-based objects.
None of these systems handle both higher-order functions and mu-
table state, as we do. Additionally, we show how to embed a dy-
namically typed programming language within a general-purpose
dependently typed programming language. This has several bene-
fits. In contrast to the prior work, each of which required a tricky,
custom soundness proof (and in the case of System D, even a new
proof technique), our approach conveniently rides on the mecha-
nized soundness result for F?. Furthermore, implementing a new
type system or program verifier is a lot of work. We simply reuse
the implementation of F?, with little or no modification. The only
new code in F? for this project was the top-level of our query com-
piler and a parser for Z3 models—totaling less than a 1000 lines
of F#—and even this code is useful in the verification for other F?

programs. Of course, the JS2ML code is new, but implementing this
is considerably easier than implementing a program verifier.

Gardner et al. (2012) provide an axiomatic semantics for
JavaScript based on separation logic. Their semantics enables pre-
cise reasoning about first-order, eval-free JavaScript programs,
including those that explicitly manipulate scope objects and proto-
type chains. As explained earlier, our current heap model forbids
the explicit mutation of the fields of an object used as the prototype
of another object. Technically, supporting this idiom is possible in
our system with a richer heap model, however, automated proving
for such complex idioms is likely to be hard. Indeed, at present,
Gardner et al. provide completely manual, pencil and paper proofs
about small, first-order JavaScript programs. In contrast, we pro-
vide a tool for automated verification of higher-order JavaScript
programs with a controlled form of prototype-based inheritance.
Nevertheless, a potential direction for future work is to embed
a subset of Gardner et al’s separation logic style within F? for
JavaScript verification.

In other work Gardner et al. (2008) show how to write specifi-
cations and reason about the DOM using context logic. Our spec-
ification of the DOM, in contrast, uses classical logic, and is not
nearly as amenable to modular reasoning about the DOM, which
has many complex aliasing patterns layered on top of a basic n-ary
tree data structire. Understanding how to better structure our spec-
ifications of the DOM, perhaps based on the insights of Gardner et
al., is another line of future work.

Many tools for automated analyses of various JavaScript subsets
have also been constructed. Notable among these are two control-
flow analyses. We have already mentioned Gatekeeper, a pointer
analysis for JavaScript—our JS2ML implementation shares infras-
tructure with this tool. The CFA2 analysis (Vardoulakis and Shivers
2011) has been implemented in the Doctor JS tool to recover infor-
mation about the call structure of a JavaScript program. Our method
of reasoning about JavaScript programs by extracting heap models
in Z3 can also be seen as a very precise control flow analysis. How-
ever, as we have already discussed, there is ample opportunity for

our tool to be improved by consuming the results of a source-level
control-flow analysis as hints to our solver.

8. Conclusions
JavaScript has a dubious reputation in the programming language
community. It is extremely popular, but is also considered to have a
semantics so unwieldy that sound, automated analysis is considered
an extremely hard problem. Our work establishes that with the right
abstractions for reasoning about higher-order dynamically typed
stores, automated program verification tools are within reach. Our
current implementation is an early prototype, and we look forward
to building on it. The results of this paper open the door to applying
a wealth of research in automated program verification techniques
to JavaScript.
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