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Abstract

Analysis and Enforcement of Web Application Security Policies
by
Joel Howard Willis Weinberger
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Dawn Song, Chair

Web applications are generally more exposed to untrusted user content than traditional
applications. Thus, web applications face a variety of new and unique threats, especially that
of content injection. One method for preventing these types of attacks is web application
security policies. These policies specify the behavior or structure of the web application.
The goal of this work is twofold. First, we aim to understand how security policies and
their systems are currently applied to web applications. Second, we aim to advance the
mechanisms used to apply policies to web applications. We focus on the first part through
two studies, examining two classes of current web application security policies. We focus
on the second part by studying and working towards two new ways of applying policies.
These areas will advance the state of the art in understanding and building web application
security policies and provide a foundation for future work in securing web applications.
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Chapter 1

Introduction

As the web becomes increasingly complex, web applications become more sophisticated and
dynamic. One of the most important ways that web applications have become complex is
in how they use input data. Web pages are no longer static; they contain dynamic content
from sources that may be trusted, untrusted, or trusted but potentially buggy. There are
many places that this type of data can come from: user input, advertisements, or widgets,
to name a few. These sources of data have led to a class of attacks know as content injection
attacks. In these attacks, an attacker is able to place malicious content on a page and make
it act as if it came from the developer. This can lead to cross-site scripting attacks, phishing,
or malicious information.

In order to counter these types of attacks, developers implement web application secu-
rity policies — policies defining allowed and disallowed behavior of content on a web page.
Traditionally, these policies have been implicitly defined by the use of sanitization functions,
or content filters, that modify untrusted data to conform to a well-understood and safe set
of behaviors. However, this approach is notoriously brittle and sometimes impossible, de-
pending on what type of behavior is enforced. At the very least, this approach requires deep
understanding of application semantics and the browser model by developers.

Several alternative solutions have been proposed for different types of content. Increas-
ingly, web frameworks are used to automate the application of sanitizers to HT'ML content.
For more dynamic and context specific content, such as advertisements, verifiers and dynamic
enforcement mechanisms like Caja [31] and ADsafe [41] have been proposed. Alternatively,
there have been a number of proposals, such as BLUEPRINT [120] and Content Security
Policies [113], to make these HTML security policies explicit in web applications.

However, none of these approaches addresses the need to analyze what the security poli-
cies of web applications actually are. That is to say, all of these approaches apply mechanisms
without asking what the policy is. Furthermore, many of these solutions have a variety of
problems that prevent developers from fully embracing them.

We propose that tools can be built to greatly improve the analysis and understanding of
web application security policies, as well as be used to better enforce such policies, both on
legacy and new applications. We can build tools to help developers understand the policies,
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implicit and explicit, that they write in applications.

1.1 Web Application Security Policies

Web applications currently use a variety of mechanisms to enforce web application security
policies, albeit usually implicitly. For the most part, enforcement of these policies falls to the
hands of sanitization, the basic filtering of untrusted content. Research has proposed several
new tools for enforcing policies, but with limited exceptions, these have not been adopted
by the development community?.

In modern HTML based web applications, much of the untrusted content is placed in
the HTML context. Enforcement of policies often falls to either the manual application of
sanitizers, or to a web framework that attempts to aid the developer in filtering the untrusted
content. However, little has been done to measure the effectiveness of these tools or even
what the real requirements of web applications are. As a first step, we study these questions
and show that the types of policies that web applications try to enforce cannot be handled
by current web application frameworks.

Even if these frameworks had more powerful policy enforcement system for HTML, it
would not help with the growth in untrusted script content that is placed on pages. For
example, advertisements with dynamic JavaScript content are placed by a variety of ad-
vertisers on web pages. The advertisement networks distributing these ads require ways
to constrain the ads so they cannot interact maliciously with the hosting page while still
providing dynamic content. In response, there have been several solutions developed, both
static and dynamic, such as Yahoo!’s ADsafe and Google’s Caja platform. However, these
systems lack several important properties, including the ability to enforce dynamic policies.
We examine the current state of these enforcement mechanisms and what they lack.

Of particular note is that none of this systems, for HT'ML or script policies, help the pro-
grammer to understand what the policy of legacy applications actually is. BLUEPRINT and
CSP make policies explicit, and CSP also attempts to apply policies to legacy applications.
Thus, our initial focus is on understanding current web application security policies.

In order to improve web application security policies, we focus on two primary areas: the
extraction of policies from web applications and the application of policies to web applica-
tions. This aids both the understanding and improvement of current and legacy applications
as well as the development of new applications.

Current Policy Systems Several systems are available that attempt implement web
application security policies, both implicitly and explicitly. Our first step is to examine
these systems that currently implement web application security policies and to measure
their power and effectiveness. This will help us better understand the problem space, as well
as the advantages and pitfalls of current solutions.

IContent Security Policy is the notable exception here as it is currently implemented and released in all
of the major browsers. We discuss Content Security Policy in more detail in Chapter 4.
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We focus on providing the first evaluations of two distinct but very important areas of
web application security policies. The first approach are web frameworks that generally
implement and encourage the use of sanitizer functions. These functions remove untrusted
elements from untrusted data they are provided with. This implicitly defines a web applica-
tion security policy because the syntactic removal defines a set of banned behaviors at that
point in the application. In Chapter 3, we evaluate the effectiveness of web frameworks in
sanitizing untrusted data in web applications, showing that the power they offer is well short
of what is required by web applications. We propose several ways in which they can improve
the mechanisms presented to the developer.

The second, more recent approach is the application of explicit HT'ML policies, pro-
vided by systems such as BEEP [76], BLUEPRINT [120], and Content Security Policies
(CSP) [113]. These systems provide explicit mechanisms for stating how parts of applica-
tions should behave in order to contain untrusted data. In Chapter 4, we show that the
systems currently in place are powerful, but occupy two extreme ends of a spectrum, namely
that of BLUEPRINT, an ultra-fine grained approach at the expense of performance, and
CSP, a very coarse grained approach at the cost of usability.

Policy Application While many new languages, frameworks, and tools provide mecha-
nisms to enforce behavioral limitations on web applications, little has been done to analyze
the implicit policies of current applications that do not use such policy tools. For exam-
ple, the PHP language [101] does not natively support web application policies explicitly so
web developers generally need to resort to the manual application of sanitizers. While some
frameworks aim to help by adding auto-sanitization and other features [141, 144], many
applications have been and still are written outside of these frameworks.

This also applies to higher level systems. For example, safe JavaScript subsets, such as
ADsafe, make claims about application behavior and how they constrain code that is written
in the subset. Little has been done to measure the accuracy of these claims. Another way
of looking at this problem is, does the stated policy match the actual, enforced policy?

This is a form of policy application. Many current web applications are written without
explicit web application security policies because they are written in languages that do not
support policies, or without tools for analyzing policies. For example, PHP contains support
for policies only through coarse-grained, manual mechanisms, such as htmlspecialchars.
These legacy applications are already built with manual policies applied, which is why we
propose policy extraction to aid our understanding of them.

However, for new applications, we can build novel techniques and tools for writing web
application security policies. One way to do this is to provide domain specific languages and
verifiers to enforce policy. While many proposals have focused on more general solutions,
we focus on more domain specific solutions in the belief that this, ultimately, allows the
developer to write more flexible and powerful policies.

In this case, we focus on enforcing policies for JavaScript, but from two different perspec-
tives. First, we look at a current JavaScript static enforcement mechanism, ADsafe, and try
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to determine if the policies that are applied match the actual stated goals of the enforcement
mechanism. In the second, we work on a novel technique for translating JavaScript into a
new language that can use static type checking to enforce policies.

In Chapter 5, we focus on “safe JavaScript subsets,” such as ADsafe. We look at ADsafe,
in particular, which attempts to provide a security policy that can be statically enforced. We
systematically explore this subset to understand if the enforced policy matches the proposed
policy. We then propose a new static policy mechanism based on ADsafe to enforce policies.

After this, in Chapter 6, we look at a new technique towards enforcing policies on small
JavaScript programs. We develop a new for translating JavaScript into a separate language
for policy enforcement. In this language, type checking can be used to statically enforce
policies. We particularly focus on small JavaScript programs, such as browser extensions.

1.2 Current Policy Mechanisms

Researchers have been looking at web application security policies for some time now, and
several mechanisms for applying policies have been proposed and implemented. In this
section, we examine this design space in order to better identify the problems at hand and
the value of current solutions.

As web applications become more complex, web frameworks provide a structured way
to ease development. These frameworks, such as Django [48] and Ruby on Rails [104], offer
support for web application security policies in the form of sanitization. However, it is
unclear if the support they provide is sufficient for the security policy needs of applications.
We propose to study this question, comparing the needs of web applications to the features
that web applications provide. In addition, we propose to develop the first formal model of
the internals of a web browser as it pertains to XSS vulnerabilities.

Aside from web frameworks, a great deal of research has been aimed at another method
of applying web application security policies. These mechanisms apply explicit policies, as
opposed to the implicit policies based on sanitization of web frameworks. Examples of these
systems are BEEP [76], BLUEPRINT [120], and Content Security Policies (CSP) [113]. In
this work, we study the space that these systems fall in to understand the affects of applying
policies in these systems. In particular, we perform the first detailed study of CSP to assess
its strengths and weaknesses, and to find a new point in the design space of explicit web
application security policies.

Web Frameworks

Web frameworks are systems, often implemented as libraries, built around a programming
language to provide a structured way to implement web applications. Many web frame-
works now provide mechanisms to support web application security policies, particularly
in the HTML portion of applications. Researchers have proposed many defenses, ranging
from purely server-side to browser-based or both [28, 98, 103, 85, 80, 129, 18]. However,
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sanitization or filtering, the practice of encoding or eliminating dangerous constructs in un-
trusted data remains the industry-standard defense strategy in existing applications [100].
Web frameworks can offer a platform to make the sanitization in web applications, which
was initially fairly ad hoc and manual, more systematic.

As part of this work, we clarify the assumptions and basic primitives web frameworks
use today and explain the challenges and subtleties in XSS sanitization that web developers
currently face. To define XSS systematically, we present the first systematic model of the web
browser internals as it pertains to XSS vulnerabilities. An XSS attack occurs when the web
browser parses data controlled by a low-privileged entity as high-privileged application code.
Our browser model includes details of the various sub-languages of the web platform, their
internal interactions, and the modifications browsers make dynamically. These intricacies
impact the assumptions made by sanitization routines in web applications. We present,
in comprehensive detail, why XSS sanitization can be subtle. For instance, we show that
sanitization performed on the server-side may be “undone” during the browser’s parsing of
content into the DOM, which affects the security of client-side JavaScript code. Sanitizing
correctly involves understanding how the web browser parses and interprets web content —
an important issue not fully explained in prior XSS security research.

A web framework can, in principle, address XSS using sanitization if it addresses the
subtleties we outline in our browser model. Whether existing frameworks achieve this goal
today is the subject of this study. We compare the techniques and state of modern web
frameworks to the empirically-observed requirements of large web applications. We system-
atically study the XSS sanitization both in web frameworks and existing application along
the following dimensions:

e Context Expressiveness and Sanitizer Correctness. Untrusted data can be em-
bedded in web application output in many different conterts. In fact, sanitizer which
provide safety for one context do not protect data embedded in other contexts. For
example, untrusted data appearing in an HTML tag content must be sanitized differ-
ently from input that appears in a URI attribute of an HTML tag. Do web frameworks
provide correct sanitizers for different contexts that applications commonly use in prac-
tice?

¢ Context-Sensitive Auto-sanitization Support. Applying sanitizers in code auto-
matically, which we term auto-sanitization, shifts the burden of ensuring safety against
XSS from developers to frameworks. Do web frameworks offer auto-sanitization at all?.
Further, a sanitizer that may be safe for use in one context may be unsafe for use in an-
other. Therefore, to achieve security, sanitization must be context-sensitive; otherwise,
auto-sanitization may provide a false sense of security. Do web frameworks adequately
address the requirement of context-sensitivity while auto-sanitizing sanitization?

e Mediation in client-side code. AJAX applications have significant client-side code
components, such as in JavaScript. There are numerous subtleties in XSS sanitiza-
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tion because client-side code may read values from the DOM. Do frameworks support
complete mediation on DOM accesses in client-side code?

We perform an empirical analysis over 14 mature web application development frame-
works, most of which are used heavily in commercial applications, and 8 large, popular
open-source web applications to analyze security along the dimensions outlined above. We
provide the first in-depth study of the gap between the sanitization provided by web frame-
works and what web applications require to correctly sanitize inputs.

We explain the subtleties of XSS in a comprehensive way. We study modern web frame-
works’ support for sanitizing user input and show that frameworks vary widely in the types
of sanitization they support. By examining the use of sanitizers in a set of real-world appli-
cations, we identify a gap between the sanitizers provided by frameworks and those required
by web applications.

Our results show that, unfortunately, the current set of web frameworks are inadequate
for expressing web application security policies; they do not provide sufficient expressiveness
for the set of policies that web applications actually look to enforce. However, we are also
able to determine a minimum set of requirements that we believe can serve as a reasonable
starting point for web application frameworks to express.

Explicit Policy Systems

Cross-site scripting (XSS) attacks are a significant threat to web applications today [136, 5].
XSS is part of a larger category of content injection attacks that threaten web applications.
These attacks violate the integrity of web applications, steal from users and companies,
and erode privacy on the web. Researchers have focused a great deal of effort at preventing
these attacks, ranging from static detection to dynamic checking of content. One recent set of
proposals that addresses content injection, HTML security policies, has become popular [120,
113].  HTML security policies provide a mechanism for an application to specify how a
document is parsed and interpreted by the browser and can be viewed as a subproblem of
more general web application security policies as they relate to HTML code. Specifically,
HTML security policies are mechanisms that define how untrusted data is handled by a web
application, such that untrusted data cannot change the structure of the page in unintended
ways. Thus, they are meant as a defense against cross-site scripting and other types of
content injection attacks by controlling how untrusted data can affect the behavior and
structure of a web page.

HTML security policies are attractive for several reasons. They can help mitigate bugs
on the server, either in how structure of content is determined or in the programmer’s model
of what content can and should be. There always might be bugs in a security policy as
well, but the hope is that policies will be simpler, more explicit, and easier to understand.
Additionally, while servers usually perform sanitization on content, it is not always obvious
what sanitization method to apply in what context [107]. HTML security policies allow the
programmer to state what structure should be allowed in a document.
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There are are several proposals for HTML security policy systems. These systems make
trade-offs in granularity to achieve different goals. However, these trade-offs are not explicitly
discussed in the literature and are not well understood. The systems have different levels of
how and where policies are applied, whether on the entire page or individual elements on
the page. We show that this granularity can affect the performance of the policy system and
how difficult it is to apply policies to a real application.

We analyze this space and to find a new point in the trade-offs of HT'ML security policy
systems. We evaluate a state-of-the-art policy system and how its trade-offs affect real world
use of of the system, and to understand the strengths and weaknesses of this system.

Several HTML security policy systems have been proposed, notably BLUEPRINT [120]
and Content Security Policy (CSP) [113]. We examine these systems to understand their
respective power and limitations. While they both provide working systems for expressing
and implementing HTML security policy, CSP is of particular importance because it is
deployed in the Firefox [12], Safari [13], and Chrome [11] web browsers.

Evaluation of the Application of CSP We evaluate the efficacy of CSP, both as an
HTML security policy foundation and the practicalities of implementing applications with
it. We discuss what CSP offers as a policy system, and the benefits of this approach. We
also show several problems with CSP:

e We show that the application of CSP to prevent XSS in legacy applications is not
necessarily a simple task. We show that in the applications we examine, they require
a large number of modifications to make them work with a CSP policy that prevents
XSS, in particular because of the requirement to remove all inline scripts.

e The use of CSP to prevent XSS attacks on an application requires modifications to
an application that may cause large performance hits. In our evaluation, we show
performance costs of up to 50% slowdown compared to the unmodified performance.

We demonstrate this by retrofitting two real applications, Bugzilla [1] and HotCRP [2], to
use CSP. We evaluate the cost of our modifications with a number of metrics, including code
change and performance metrics. We also discuss the process of modifying the applications,
identifying several of the more common problems encountered.

Using this analysis of the strengths and weaknesses, we discuss the trade offs in HTML
security policy systems and identify a new set of properties for a new system to implement.
This analysis has been completed and is being prepped for submission. We show in our eval-
uation that the performance of our modified versions of the example applications experience
substantial slowdowns in performance.
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1.3 Policy Application

Web application security policies protect applications from untrusted user content by spec-
ifying the allowed behaviors of the content. In current web applications, these policies are
generally implicitly defined by the what the application does to this content— namely, how
the application applies sanitizers. Unfortunately, this means that the policies are often not
crisply defined, and thus not well understood by developers or designers.

While many languages provide at least basic support for sanitization, such as PHP’s
htmlspecialchars function, there has been little work on understanding what the policies
are. The developer may use a web application framework, but ultimately, the policy is still
implicitly defined by their own labeling and annotations. Thus, the developer is required to
do their own manual audit to ensure a safe web application security policy.

This is a problem for several reasons. First, a developer may intend to write a policy with
several different code paths, but the same set of sanitizers applied to data. However, it is not
uncommon for mistakes to be made, and for different sanitizers to be applied on different
paths unintentionally. Second, a developer may code a set of policies for the untrusted data
but not explicitly write them down. At a later point, she may not remember the policies
that apply to certain data or another developer may need to know this. Because the policies
are not known, developers are forced to manually understand the policy.

Related to this problem are policies for more dynamic content, such as JavaScript. In-
terestingly, web application security policy verifiers for scripts are more prevalent than for
HTML content. However, while the policies of these verifiers are generally well defined,
their correctness has not been checked. Thus, there is little reason to trust the policy of the
verifiers or the implementation.

Additionally, applications already written in today’s frameworks and with today’s tools
are limited in how they can express policy. We can provide useful tools for improving our
understanding of how these applications use web application security policies, but this does
not necessarily improve the mechanisms by which these applications can express policies.
For new applications, there is more flexibility in the types of tools we can provide to help
developers express web application security policies.

Towards addressing these problems, we propose two new techniques. The first extracts
the enforced policy of the static script verifier, ADsafe, to understand the properties it
actually provides. We discovered that the policy it enforces falls short of what developers
might expect or desire. We then develop a new version of ADsafe with the desired properties.
To aid in this, we also develop a tool that tracks the heap structure of the web browser to
detect connections between different security principles.

Our second technique is a novel translation of JavaScript to ML. We show that this
technique is a promising future direction for fine-grained policy enforcement for JavaScript.
We show through several examples the power of this translation, and that it is promising for
using type checking to prove behaviors of programs.
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Network Network
<script>
</script>

Figure 1.1: A publisher sells space on his or her page to an advertising network. This
space may be resold through multiple advertising networks, until it is sold to an advertiser,
who provides an advertisement written in a secure JavaScript subset. The advertisement is
checked for safety by each advertising network, in turn, and ultimately served to visitors of
the publisher’s web page.

Verifying Verifier Policies

At its core, displaying third-party advertisements on a publisher’s web site is a special case of
a mashup. In this work, we study whether existing techniques are well-suited for containing
advertisements and propose improvements to mashup techniques based on static verifiers.
We study the existing techniques by applying dynamic analysis of the application’s heap
structure to verify if the policy of the static verifier matches the goals of the verifier; that is,
do the verifiers correctly enforce the intended policy?

Static verifiers, such as ADsafe [41], Dojo Secure [145], and Jacaranda [44], are a particu-
larly promising mashup technique for advertising. In this approach, the advertising network
(and one or more of its syndicates) verifies that the advertisement’s JavaScript source code
conforms to a particular subset of the JavaScript language with desirable containment prop-
erties (see Figure 5.1). The precise JavaScript subset varies between systems, but the central
idea is to restrict the guest advertisement to a well-behaved subset of the language in which
the guest can interact only with object references explicitly and intentionally provided to
the guest by the host, thus preventing the guest from interfering with the rest of the page.

We focus on evaluating and improving the containment of safe JavaScript subsets that use
static verification. Static verifiers are appealing because they provide fine-grained control of
the advertisement’s privileges. For example, the hosting page can restrict the advertisement
to instantiating only fully patched versions of Flash Player, preventing a malicious adver-
tisement from exploiting known vulnerabilities in older versions of the plug-in. However,
existing static verifiers do not provide perfect containment. To properly contain advertise-
ments, these systems impose restrictions on the publisher: the publisher must avoid using
certain JavaScript features that let the advertisement breach containment.
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These static verifiers impose restrictions on publishers because of a design decision shared
by the existing static verifiers: the verifiers restrict access to object properties using a static
blacklist. The blacklist prevents the guest from accessing properties, such as __proto__, that
can be used to breach containment. The designers of the subsets warrant that their blacklist
is sufficient to prevent an advertisement from breaching containment on an otherwise empty
page in their supported browsers (or else the subset would always fail to contain advertise-
ments), but the blacklist approach does not restrict access to new properties introduced by
the publisher. For example, a publisher might add a method to the string prototype that
has not been vetted by the subset designer.

This blacklist defines the HTML application security policy that the verifier wishes to
enforce. The verifier guarantees that applications it passes will not be able to violate these
bounds; that is, those applications will not be able to access properties on the blacklist. In
this study, we assume the verifier is implemented correctly. Our questions are only regarding
the effectiveness of this policy.

The policy that ADsafe enforces makes several assumptions about the behavior of host
websites. Namely, if the host website modifies the prototypes of any common objects, the
ADsafe’s policy fails to be secure. ADsafe has, in the past, stated that it assumes most web
pages do not code in such a way. To measure if these assumptions hold, we build a tool
that dynamically analyzes the heap graph of web pages running advertisements verified by
ADsafe. The tool tracks the connections between different objects in the JavaScript heap,
identifying them as part of the advertisement or the host page. If the ADsafe assumptions
fail to hold, then advertisements will be able to break out of their contained space through
unrestricted connections in the heap graph.

We run our tool on the non-adult web sites in the Alexa US Top 100 [15] to determine
(1) how often sites add methods to prototypes and (2) how many of these methods could be
used to breach containment. We discover that, of the non-adult web sites in the Alexa US
Top 100, 59% expose new properties to the guest and that 37% of these sites contained at
least one method that could be exploited by an ADsafe-verified advertisement to mount a
cross-site scripting (XSS) attack against the publisher.

While publishers could manually vet their exposed methods, we propose eliminating this
attack surface by replacing the property blacklist with a whitelist, making static verifiers
more robust. Using a technique similar to script accenting [33], we prevent the guest adver-
tisement from accessing properties defined by the hosting page unless those properties are
explicitly granted to the guest. We show that our safe JavaScript subset is as expressive and
as easy-to-use as ADsafe by implementing a simple, idempotent compiler that transforms
any ADsafe-verified guest into our proposed subset.

Thus, in this work, we check the actual policy of a set of static JavaScript verifiers. We
show that the policy of the verifiers is, in fact, insecure. We then propose an alternate web
application security policy that we show is secure in the same scenarios.
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Translation for Policies via Type Checking

While policies can be used to prevent untrusted code from executing in an application, there
are times when developers want untrusted code to execute on the page, albeit in a controlled
way. Advertisements are one such example, but also consider web browser extensions. In
these examples, an untrusted third party provides a JavaScript snippet for the browser to
execute, and as such, it may want to guarantee certain limitations on what that code can
do.

Several systems have been developed to enforce web application policies on these un-
trusted JavaScript scripts. Most notably are Yahoo!’s ADsafe [41] and Google’s Caja [31].
ADsafe, described in Section 1.3, provides a static verifier to ensure that the script conforms
to a safe JavaScript subset. On the other hand, Caja provides a dynamic verifier that com-
piles the script and checks its behavior as it executes. Both approaches have limitations.
In the case of ADsafe, the verifier is based on syntactic checks with limited insight into the
application’s behavior. Thus, the application is potentially limited to a stricter web appli-
cation security policy than may be necessary. On the other hand, Caja provides a much
richer set of semantics at the cost of performance. While ADsafe’s verifier is purely static,
Caja compiles in a number of dynamic checks that add substantially to the overhead of the
application [53].

In this work, we develop a novel translation of JavaScript to ML. We show that this
technique is promising for enforcing fine-grained policies on JavaScript applications. Through
several examples of JavaScript browser extensions, we show that type checking techniques
on translated JavaScript applications have great potential.

Recently, Guha et. al. developed a system for verifying web application security policies
for web browser extensions [57]. In their system, extensions are written in Fine, a high-
level, type safe programming language [115]. Web application security policies are written
in Datalog and are verified against the browser extensions.

Our approach is similar. For programs written in a subset of JavaScript, we develop a
tool to automatically translate these programs to ML. Using these translations, we can type
check the JavaScript programs, assuming a sound translation, and prove basic properties
about the programs. We show several example translations of real browser extensions, and
show how type checking can be used to prove interesting properties of these extensions.

This has the potential to provide much more flexibility than the current systems for
JavaScript because it is static but potentially more expressive than current verifiers. While
it currently has many limitations, it shows a new, novel, promising path for JavaScript
verification by translating JavaScript into other forms.

We show a novel translation of JavaScript into a statically refined, dependent, typed
language. We also develop a library for modeling JavaScript behavior, including the DOM.
We show how this translation can be used by a verifier for enforcing JavaScript policies on
browser extensions.
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Chapter 2

Background and Related Work

In this chapter, we discuss general background and related work to security policies for the
web. In each succeeding chapter, we include work that relates directly to that particular
subject.

While the goal of web application security policies applies to the larger problem of content
injection, much of the related work relates to the more specific problem of cross-site scripting.
Here we discuss much of the related research to these problems, with a focus on XSS research.

A recent study by Scholte, et al. shows that despite all of the work on and tools built for
XSS, the presence of XSS vulnerabilities in web applications has not improved recently. [109]
That is, both the quantity of XSS vulnerabilities, the complexity, or the presence of vulner-
abilities in old versus new web applications has not significantly changed over the past 4 or
5 years. This implies that the current infrastructure and tools are not sufficiently addressing
the current set of problems.

XSS Analysis and Defense Much of the research on cross-site scripting vulnerabilities
has focused on finding XSS flaws in web applications, specifically on server-side code [140, 83,
82, 138, 77, 72,99, 92, 20| but also more recently on JavaScript code [105, 106, 21, 58]. These
works have underscored the two main causes of XSS vulnerabilities: identifying untrusted
data at output and errors in sanitization by applications. There have been three kinds of
defenses: purely server-side, purely browser-based, and those involving both client and server
collaboration.

BLUEPRINT [120], SCRIPTGARD [107] and XSS-GUARD [28] are two server-side solu-
tions that have provided insight into context sensitive sanitization. In particular, BLUEPRINT
provides a deeper model of the web browser and points to paths between the browser com-
ponents may vary across browsers. We discuss BLUEPRINT in particular detail in our
proposed work in Section 1.2.

Purely browser-based solutions, such as XSSAuditor, and client-only solutions, such as
DSI [98], have been implemented in modern browsers. These mechanisms are useful in
nullifying common attack scenarios by observing HTTP requests and intercepting HTTP
responses during the browser’s parsing. However, they do not address the problem of sep-
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arating what is untrusted from trusted data, as pointed out by Barth et al. [26]. Other
language-based solutions for customizable XSS security policies are also an area of active
research [95].

Cross-site scripting attacks have also been shown to result from unsafe parsing of CSS [71],
optimistic content-sniffing algorithms in browsers [22], and from vulnerabilities in exten-
sions [21, 23]. Failure to isolate mashups and advertisements may also result in code injec-
tion vulnerabilities, but typically the safety properties that these attacks violate are treated
as a separate class from XSS vulnerabilities. These violated properties include isolation
of principles in web browser primitives [130], authority safety [91] and statically verified
containment [53].

Client-server collaborative defenses have been investigated in BEEP [76], DSI and Non-
ceSpaces [61]. In these proposals, the server is responsible for identifying untrusted data
which it reports to the browser, and the browser is modified to ensure that XSS attacks can
not result from parsing the untrusted data. While these proposals are encouraging, they
require updates in browser implementations as well as server-side code. The closest practical
implementation of such client-server defense architecture is the recent content security policy
specification [113]. We discuss the limitations of CSP in greater detail in Section 1.2.

Correctness of Sanitization While several systems have analyzed server-side code, the
SANER [20] system empirically showed that custom sanitization routines in web applica-
tions can be error-prone. FLAX [106] and KUDZU [105] empirically showed that sanitization
errors are not uncommon in client-side JavaScript code. While these works highlight exam-
ples, the complexity of the sanitization process remained unexplained. Our observation is
that sanitization is pervasively used in emerging web frameworks as well as large, security-
conscious applications. We discuss whether applications should use sanitization for defense
in light of previous bugs.

Among server-side defenses, BLUEPRINT provided a sanitization-free strategy for pre-
venting cross-site scripting attacks, which involved the explicit construction of the intended
parse tree in the browser via JavaScript. We observe that sanitization-free mechanisms stand
in contrast to whitelist-based canonicalization sanitization which is what is generally imple-
mented in emerging frameworks, the security of which has neither been fundamentally broken
nor proven. Research on string analysis and other automata-based verification systems is
currently active, and this research is directly relevant to these questions [79, 105, 68].

Techniques for Separating Untrusted Content Taint-tracking based techniques aimed
to address the problem of identifying and separating untrusted data from HTML output to
ensure that untrusted data gets sanitized before it is output [99, 140, 77, 128, 34, 110].
Challenges in implementing taint-analysis as well as performance overheads have precluded
their use in deployed web applications. Security-typed languages and type-systems offer
another mechanism to ensure the robust isolation of untrusted data from HTML code out-
put [35, 117, 103, 111]. The generality of type systems allows for creating a finer separation
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between untrusted inputs, a property we motivate our empirical analysis. HTML templat-
ing engines, such as those studied in this work, offer a different model in which they coerce
developers into explicitly specifying trusted content. This offers a fail-closed design and has
seen adoption in practice because of its ease of use.
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Chapter 3

Evaluating Implicit Policy
Mechanisms in Web Frameworks

3.1 Introduction

Cross-site scripting (XSS) attacks are an unrelenting threat to existing and emerging web
applications. Major web services such as Google Analytics, Facebook and Twitter have had
XSS issues in recent years despite intense research on the subject [108, 74, 124]. Though
XSS mitigation and analysis techniques have enjoyed intense focus [28, 98, 103, 80, 129, 18,
120, 106, 105, 140, 82, 138, 77, 72, 99, 92, 20, 26], research has paid little or no attention to
a promising sets of tools for solving the XSS riddle—web application frameworks—which are
gaining wide adoption [62, 37, 43, 112, 104, 48, 144, 141, 75, 93, 119]. Many of these frame-
works claim that their sanitization abstractions can be used to make web applications secure
against XSS [50, 141]. Though possible in principle, this chapter investigates the extent
to which it is presently true, clarifies the assumptions that frameworks make, and outlines
the fundamental challenges that frameworks need to address to provide comprehensive XSS
defense.

Researchers have proposed defenses ranging from purely server-side to browser-based or
both [28, 98, 103, 80, 129, 18]. However, sanitization or filtering, the practice of encoding
or eliminating dangerous constructs in untrusted data, remains the industry-standard de-
fense strategy [100]. At present, each web application needs to implement XSS sanitization
manually, which is prone to errors [20, 107]. Web frameworks offer a platform to automate
sanitization in web applications, freeing developers from existing ad hoc and error-prone
manual analysis. As web applications increasingly rely on web frameworks, we must un-

This chapter was previously published at the 2011 European Symposium on Research in
Computer Security [135].
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derstand the assumptions web frameworks build on and the security of their underlying
sanitization mechanisms.

XSS sanitization is deviously complex; it involves understanding how the web browser
parses and interprets web content in non-trivial detail. Though immensely important, this
issue has not been fully explained in prior XSS research. For instance, prior research does
not detail the security ramifications of the complex interactions between the sub-languages
implemented in the browser or the subtle variations in different interfaces for accessing or
evaluating data via JavaScript’s DOM API. This has important implications on the security
of XSS sanitization, as we show through multiple examples in this chapter. For instance, we
show examples of how sanitization performed on the server-side can be effectively “undone”
by the browser’s parsing of content into the DOM, which may introduce XSS vulnerabilities
in client-side JavaScript code.

A web framework can address XSS using sanitization if it correctly addresses all the
subtleties. Whether existing frameworks achieve this goal is an important question and a
subject of this paper. A systematic study of today’s web frameworks should evaluate their
security and assumptions along the following dimensions to quantify their benefits:

e Context Expressiveness. Untrusted data needs to be sanitized differently based on
its context in the HTML document. For example, the sanitization requirements of a
URI attribute are different from those of an HTML tag. Do web frameworks provide
sanitizers for different contexts that applications commonly use in practice?

e Auto-sanitization and Context-sensitivity. Applying sanitizers in code automat-
ically, which we term auto-sanitization, shifts the burden of ensuring safety against
XSS from developers to frameworks. However, a sanitizer that may be safe for use in
one context may be unsafe for use in another. Therefore, to achieve security, auto-
sanitization must be context-sensitive; otherwise, as we explain in Section 3.3, it may
provide a false sense of security. To what extent do modern web frameworks offer
context-sensitive auto-sanitization?

e Security of dynamic client-side evaluation. AJAX applications have significant
client-side code components, such as in JavaScript. There are numerous subtleties in
XSS sanitization because client-side code may read values from the DOM. Do frame-
works support complete mediation on DOM accesses in client-side code?

Contributions and Approach We explain the challenges inherent in XSS sanitization.
We present a novel model of the web browser’s parsing internals in sufficient detail to explain
the subtleties of XSS sanitization. Our model is the first to comprehensively conceptualize
the difficulties of sanitization. Our browser model includes details of the sub-languages
supported by HTML5, their internal interactions, and the transductions browsers introduce
on content. We provide examples of XSS scenarios that result.

This chapter is a first step towards initiating research on secure web frameworks. It
systematically identifies the features and pitfalls in XSS sanitization abstractions of today’s
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web frameworks and the challenges a secure framework must address. We compare existing
abstractions in frameworks to the requirements of web applications, which we derive by an
empirical analysis. We study 14 mature, commercially used web frameworks and 8 popular
open-source web applications. We establish whether the applications we study could be
migrated to use the abstractions of today’s web frameworks. We quantify the security of the
abstractions in frameworks and clarify the liability developers will continue to take even if
they were to migrate their applications to today’s frameworks. We provide the first in-depth
study of the gap between the sanitization abstractions provided by web frameworks and what
web applications require for safety against XSS. We conclude that though web frameworks
have the potential to secure applications against XSS, most existing frameworks fall short
of achieving this goal.

3.2 A Systematic Browser Model for XSS

We formulate XSS with a comprehensive model of the browser’s parsing behavior in Sec-
tion 3.2. We discuss the challenges and subtleties XSS sanitization must address in Sec-
tion 3.2, and how web frameworks could offer a potential solution in Section 3.2. We outline
our evaluation objectives and formulate the dimensions along which we empirically measure
the security of web frameworks in Section 3.2.

Problem Formulation: XSS Explained

Web applications mix control data (code) and content in their output, generated by server-
side code, which is consumed as client-side code by the web browser. When data controlled
by the attacker is interpreted by the web browser as if it was code written by the web
developer, an XSS attack results. A canonical example of an XSS attack is as follows.
Consider a blogging web application that emits untrusted content, such as anonymous com-
ments, on the web page. If the developer is not careful, an attacker can input text such
as <script>...<script>, which may be output verbatim in the server’s output HT'ML page.
When a user visits this blog page, her web browser will execute the attacker controlled text
as script code.

XSS sanitization requires removal of such dangerous tags from the untrusted data. Unfor-
tunately, not all cases are as simple as this <script> tag example. In the rest of this section,
we identify browser features that make preventing XSS much more complicated. Previous
research has indicated that this problem is complex, but we are not aware of an in-depth,
systematic problem formulation.

The Browser Model We present a comprehensive model of the web browser’s parsing
behavior. While the intricacies of browser parsing behavior have been discussed before [143],
a formal model has not been built to fully explore its complexity. We show this model
in Figure 3.1. Abstractly, the browser can be viewed as a collection of HTML-related sub-
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Figure 3.1: Flow of Data in our Browser Model. Certain contexts such as PCDATA and CDATA
directly refer to parser states in the HTML 5 specification. We refer to the numbered and
underlined edges during our discussion in the text.

grammars and a collection of transducers. Sub-grammars correspond to parsers for languages
such as URI schemes, CSS, HTML, and JavaScript (the rounded rectangles in Figure 3.1).
Transducers transform or change the representation of the text, such as in HTML-entity
encoding/decoding, URI-encoding, JavaScript Unicode encoding and so on (the unshaded
rectangles in Figure 3.1). The web application’s output, i.e., HTML page, is input into the
browser via the network; it can be directly fed into the HI'ML parser after some preprocessing
or it can be fed into JavaScript’s HTML evaluation constructs. The browser parses these
input fragments in stages—when a fragment is recognized as a term in another sub-grammar,
it is shipped to the corresponding sub-grammar for reparsing and evaluation (e.g., edge 2).
For example, while the top-level HTML grammar identifies an anchor (<a>) tag in the HTML
document, the contents of the href attribute are sent to the URI parser (edge 4). The URI
parser handles a javascript: URI by sending its contents to the JavaScript parser (edge 3),
while other URIs are sent to their respective parsers.
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Subtleties and Challenges in XSS Sanitization

The model shows that the interaction between sub-components is complex; burdening de-
velopers with fully understanding their subtleties is impractical. We now describe a number
of such challenges that correct sanitization-based defense needs to address.

Challenge 1: Context Sensitivity Sanitization for XSS defense requires knowledge of
where untrusted input appears structurally and semantically in the web application. For
example, simple HTML-entity encoding is a sufficient sanitization procedure to neutralize
XSS attacks when is placed inside the body of an HTML tag, or, in the PCDATA (edge 1)
parsing context, as defined by HTML5 [67]. However, when data is placed in a resource
URI, such as the src or href attribute of a tag, HTML-encoding is insufficient to block
attacks such as via a javascript: URI (edge 4 and 5). We term the intuitive notion of
where untrusted data appears as its contert. Sanitization requirements vary by contexts.
Frameworks providing sanitization primitives need to be mindful of such differences from
context to context. The list of these differences is large [63].

Challenge 2: Sanitizing nested contexts We can see in the model that a string in a
web application’s output can be parsed by multiple sub-parsers in the browser. We say that
such a string is placed in nested contexts. That is, its interpretation in the browser will cause
the browser to traverse more than one edge shown in Figure 3.1.

Sanitizing for nested contexts adds its own complexity. Consider an embedding of an
untrusted string inside a script block, such as <script> var x = ¢ UNTRUSTED DATA’...</script>.
In this example, when the underlined data is read by the browser, it is simultaneously placed
in two contexts. It is placed in a JavaScript string literal context by the JavaScript parser
(edge 2) due to the single quotes. But, before that, it is inside a <script> HTML tag (or
RCDATA context according to the HTML 5 specification) that is parsed by the HTML parser.
Two distinct attack vectors can be used here: the attacker could use a single quote to break
out of the JavaScript string context, or inject </script> to break out of the script tag. In
fact, sanitizers commonly fail to account for the latter because they do not recognize the
presence of nested contexts.

Challenge 3: Browser Transductions If dealing with multiple contexts is not arduous
enough, our model highlights the tmplicit transductions that browsers perform when handing
data from one sub-parser to another. These are represented by edges from rounded rectangles
to unshaded rectangles in Figure 3.1. Such transductions and browser-side modifications can,
surprisingly, undo sanitization applied on the server.

Consider a blog page in which comments are hidden by default and displayed only after
a user clicks a button. The code uses an onclick JavaScript event handler:

<div class=‘comment-box’onclick=‘displayComment (" UNTRUSTED",this)’>

. hidden comment ... </div>
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The underlined untrusted comment is in two nested contexts: the HT'ML attribute and
single-quoted JavaScript string contexts. Apart from preventing the data from escaping
out of the two contexts separately (Challenge 2), the sanitization must worry about an
additional problem. The HTML 5 standard mandates that the browser HTML-entity decode
an attribute value (edge 3) before sending it to a sub-grammar. As a result, the attacker
can use additional attack characters even if the sanitization performs HTML-entity encoding
to prevent attacks. The characters &quot; will get converted to " before being sent to the
JavaScript parser. This will allow the untrusted comment to break out of the string context
in the JavaScript parser. We call such implicit conversions browser transductions. Full details
of the transductions are available in Appendix A.

Challenge 4: Dynamic Code Evaluation In principle, the chain of edges traversed by
the browser while parsing a text can be arbitrarily long because the browser can dynamically
evaluate code. Untrusted content can keep cycling through HTML and JavaScript contexts.
For example, consider the following JavaScript code fragment:

function foo(untrusted) {
document .write("<input onclick=’foo(" + untrusted + ")’ >");

}

Since untrusted text is repeatedly pumped through the JavaScript string and HTML contexts
(edges 3 and 6 of Figure 3.1), statically determining the context traversal chain on the
server is infeasible. In principle, purely server-side sanitization is not sufficient for context
determination because of dynamic code evaluation. Client-side sanitization is needed in
these cases to fully mitigate potential attacks. Failure to properly sanitize such dynamic
evaluation leads to the general class of attacks called DOM-based XSS or client-side code
injection [123]. In contrast to Challenges 2 and 3, such vulnerabilities are caused not by a lack
of understanding the browser, but of frameworks not understanding application behavior.

Another key observation is that browser transductions along the edges of Figure 3.1
vary from one edge to another, as detailed in Appendix A. This mismatch can cause XSS
vulnerabilities. During our evaluation, we found one such bug (Section 3.3). We speculate
that JavaScript-heavy web applications are likely to have such vulnerabilities.

Challenge 5: Character-set Issues Successfully sanitizing a string at the server side
implicitly requires that the sanitizer and the browser are using the same character set while
working with the string. A common source of XSS vulnerabilities is a mismatch in the charset
assumed by the sanitizer and the charset used by the browser. For example, the ASCII string
+ADw- does not have any suspicious characters. But when interpreted by the browser as UTF-
7 character-set, it maps to the dangerous < character: this mismatch between the server-side
sanitization and browser character set selection has led to multiple XSS vulnerabilities [125].

Challenge 6: MIME-based XSS, Universal XSS, and Mashup Confinement Browser
quirks, especially in interpreting content or MIME types [22], contribute their own share of
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XSS vulnerabilities. Similarly, bugs in browser implementations, such as capability leaks [53]
and parsing inconsistencies [137], or in browser extensions 23] are important components
of the XSS landscape. However, these do not pertain to sanitization defenses in web frame-
works. Therefore, we consider them to be out-of-scope for this study.

The Role of Web frameworks

Web application development frameworks provide components to enable typical work flows
in web application development. These frameworks can abstract away repetitive and com-
plex tasks, freeing the developer to concentrate on his particular scenario. Consider session
management, a common feature that is non-trivial to implement securely. Most web applica-
tion frameworks automate session management, hiding this complexity from the developer.
Similarly, web application frameworks can streamline and hide the complexity of XSS sani-
tization from the developer. In fact, increased security is often touted as a major benefit of
switching to web application frameworks [50, 141].

Frameworks can either provide XSS sanitization routines in a library or they can au-
tomatically add appropriate sanitization code to a web application. We term the latter
approach auto-sanitization. In the absence of auto-sanitization, the burden of calling the
sanitizers is on the developer, which we have seen is an error-prone requirement. On the
other hand, auto-sanitization, if incorrectly implemented, can give a false sense of security
because a developer may defer all sanitization to this mechanism.

Analysis Objectives

In theory, use of a web application framework should free the developer from the complexities
of XSS sanitization as discussed earlier and illustrated in Figure 3.1. If true, this requires the
framework to grapple with all these complexities instead. We abstract the most important
challenges into the following three dimensions:

e Context Expressiveness and Sanitizer Correctness. As we detailed in Challenge
1, sanitization requirements change based on the context of the untrusted data. We are
interested in investigating the set of contexts in which untrusted data is used by web
applications, and whether web frameworks support those contexts. In the absence of
such support, a developer will have to revert to manually writing sanitization functions.
The challenges outlined in Section 3.2 make manually developing correct sanitizers a
non-starter. Instead, we ask, do web frameworks provide correct sanitizers for different
contexts that web applications commonly use in practice?

e Auto-sanitization and Context-Sensitivity. Providing sanitizers is only a small
part of the overall solution necessary to defend against XSS attacks. Applying sanitizers
in code automatically, which we term auto-sanitization, shifts the burden of ensuring
safety against XSS from developers to frameworks. The benefit of this is self-evident:
performing correct sanitization in framework code spares each and every developer
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from having to implement correct sanitization himself, and from having to remember
to perform that sanitization everywhere it should be performed. Furthermore, correct
auto-sanitization needs to be context-sensitive—context-insensitive auto-sanitization
can lead to a false sense of security. Do web frameworks offer auto-sanitization, and if
s0, is it context-sensitive?

e Security of client-side code evaluation. Much of the research on XSS has focused
on the subtleties of parsing in HTML contexts across browsers. But AJAX web ap-
plications have significant client-side code components, such as in JavaScript. There
are numerous subtleties in XSS sanitization because client-side code may read values
from the DOM. Sanitization performed on the server-side may be “undone” during
the browser’s parsing of content into the DOM (Challenge 3 and Challenge 4). Do
frameworks support complete mediation on DOM accesses in client-side code?

In this study, we focus solely on XSS sanitization features in web frameworks and ignore
all other framework features. We also do not include purely client-side frameworks such as
jQuery [3] because these do not provide XSS protection mechanisms. Additionally, untrusted
data used in these libraries also needs server-side sanitization.

3.3 Analysis of Web Frameworks and Applications

In this section, we empirically analyze web frameworks and the sanitization abstractions
they provide. We show that there is a mismatch in the abstractions provided by frameworks
and the requirements of applications.

We begin by analyzing the “auto-sanitization” feature—a security primitive in which web
frameworks sanitize untrusted data automatically—in Section 3.3. We identify the extent to
which it is available, the pitfalls of its implementation, and whether developers can blindly
trust this mechanism if they migrate to or develop applications on existing auto-sanitizing
frameworks. We then evaluate the support for dynamic code evaluation via JavaScript in
frameworks in Section 3.3. In the previous section, we identified subtleties in the browser’s
DOM interface. In Section 3.3, we discuss whether applications adequately understand it to
prevent XSS bugs.

Frameworks may not provide auto-sanitization, but instead may provide sanitizers that
developers can manually invoke. Arguably, the sanitizers implemented by frameworks would
be more robust than the ones implemented by the application developer. We evaluate the
breadth of contexts for which each framework provides sanitizers, or the context expres-
siveness of each framework, in Section 3.3. We also compare it to the requirements of the
applications we study today to evaluate whether this expressiveness is enough for real-world
applications.

Finally, we evaluate frameworks’ assumptions regarding correctness of sanitization and
compare these to the sanitization practices in security-conscious applications.
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Methodology and Analysis Subjects We examine 14 popular web application frame-
works in commercial use for different programming languages and 8 popular PHP web ap-
plications ranging from 19 KLOC to 532 KLOC in size. We used a mixture of manual and
automated exploration to identify sanitizers in the web application running on an instru-
mented PHP interpreter. We then executed the application again along paths that use these
sanitization functions and parsed the outputs using an HTML 5-compliant browser to de-
termine the contexts for which they sanitize. Due to space constraints, this chapter focuses
solely on the results of our empirical analysis. A technical report provides the full details of
the techniques employed [134].

Auto-Sanitization: Features and Pitfalls

Auto-sanitization is a feature that shifts the burden of ensuring safety against XSS from the
developer to the framework. In a framework that includes auto-sanitization, the application
developer is responsible for indicating which variables will require sanitization. When the
page is output, the web application framework can then apply the correct sanitizer to these
variables. Our findings, summarized in Table 3.1, are as follows:

e Of the 14 frameworks evaluated, only 7 support some form of auto-sanitization.

e 4 out of the 7 auto-sanitization framework apply a “one-size-fits-all” strategy to saniti-
zation. That is, they apply the same sanitizer to all flows of untrusted data irrespective
of the context into which the data flows. We call this context-insensitive sanitization,
which is fundamentally unsafe, as explained later.

e We measure the fraction of application output sinks actually protected by context-
insensitive auto-sanitization mechanism in 10 applications built on Django, a popular
web framework. Table 3.2 presents our findings. The mechanism fails to correctly
protect between 14.8% and 33.6% of an application’s output sinks.

e Only 3 frameworks perform context-sensitive sanitization.

No auto-sanitization Only half of the studied frameworks provide any auto-sanitization
support. In those that don’t, developers must deal with the challenges of selecting where to
apply built-in or custom sanitizers. Recent studies have shown that this manual process is
prone to errors, even in security-audited applications [107, 52]. We also observed instances
of this phenomenon in our analysis. The following example is from a Django application
called GRAMPS.

Example 1

{% if header.sortable %}
<a href="{{header.url|escape}}">
{% endif %}
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Language Framework, Plugin, or Feature Automatically | Performs Pointcut

Sanitizes in | Context-

HTML Con- | Aware Sani-

text tization
PHP Codelgniter ° Request Reception
VB, C#, C++, F# | ASP.NET Request Validation [17] | Request Reception
Ruby xss_terminate Rails plugin [139] . Database Insertion
Python Django ° Template Processing
Java GWT SafeHtml . Template Processing
C++ Ctemplate ° Template Processing
Language-neutral ClearSilver ° Template Processing

Table 3.1: Extent of automatic sanitization support in the frameworks we study and the
pointcut (set of points in the control flow) where the automatic sanitization is applied.

The developer sanitizes a data variable placed in the href attribute but uses the HTML-
entity encoder (escape) to sanitize the data variable header.url. This is an instance of
Challenge 2 outlined in Section 3.2. In particular, this sanitizer fails to prevent XSS attack
vectors such as javascript: URIs.

Insecurity of Context-insensitive auto-sanitization Another interesting fact about
the above example is that even if the developer relied on Django’s default auto-sanitization,
the code would be vulnerable to XSS attacks. Django employs context-insensitive auto-
sanitization, i.e., it applies the same sanitizer (escape) irrespective of the output context.
escape, which does an HTML entity encode, is safe for use in HIML tag context but unsafe
for other contexts. In the above example, applying escape, automatically or otherwise, fails
to protect against XSS attacks. Auto-sanitization support in Rails [139], .NET (request
validation [17]) and Codelgniter are all context-insensitive and have similar problems.

Context-insensitive auto-sanitization provides a false sense of security. On the other
hand, relying on developers to pick a sanitizer consistent with the context is error-prone,
and one XSS hole is sufficient to subvert the web application’s integrity. Thus, because it
covers some limited cases, context-insensitive auto-sanitization is better protection than no
auto-sanitization.

We measure the percentage of output sinks protected by context-insensitive auto-sanitization
in 10 Django-based applications that we randomly selected for further investigation [49]. We
statically correlated the automatically applied sanitizer to the context of the data; the re-
sults are in Table 3.2. The mechanism protects between 66.4% and 85.2% of the output
sinks, but conversely permits XSS vectors in 14.8% to 33.6% of the contexts, subject to
whether attackers control the sanitized data or not. We did not determine the exploitabil-
ity of these incorrectly auto-sanitized cases, but we observed that in most of these cases,
developers resorted to custom manual sanitization. An auto-sanitization mechanism that
requires developers to sanitize diligently is self-defeating. Developers should be aware of this
responsibility when building on such a mechanism.
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Web Application | No. % % % % % % % % %
Sinks | Auto- Sinks Sinks Sinks Sinks Sinks Sinks Sinks Sinks
sanitized not man- in in in in JS|in JS | in
Sinks sani- ually HTML | URI URI Attr. Num- | Style
tized sani- Con- Attr. Attr. Con- ber or | Attr.
(marked tized text (excl. | (incl text String | Con-
safe) scheme) scheme) Con- text
text
GRAMPS 286 77.9 0.0 22.0 66.4 3.4 30.0 0.0 0.0 0.0
Genealogy
Manage-
ment
HicroKee’s 92 83.6 7.6 8.6 83.6 6.5 7.6 1.0 0.0 1.0
Blog
FabioSouto.eu 55 90.9 9.0 0.0 67.2 7.2 23.6 0.0 1.8 0.0
Phillip 94 92.5 7.4 0.0 73.4 11.7 12.7 0.0 2.1 0.0
Jones’
Eportfolio
EAG cms 19 94.7 5.2 0.0 84.2 0.0 5.2 0.0 0.0 10.5
Boycott 347 96.2 3.4 0.2 71.7 1.1 25.3 0.0 1.7 0.0
Toolkit
Damned 359 96.6 3.3 0.0 74.6 0.5 17.8 0.0 0.2 6.6
Lies
oebfare 149 97.3 2.6 0.0 85.2 6.0 8.0 0.0 0.0 0.6
Malaysia 235 98.7 1.2 0.0 77.8 0.0 1.7 0.0 20.4 0.0
Crime
Philippe 13 100.0 0.0 0.0 84.6 0.0 15.3 0.0 0.0 0.0
Marichal’s
web site

Table 3.2: Usage of auto-sanitization in Django applications. The first 2 columns are the
number of sinks in the templates and the percentage of these sinks for which auto-sanitization
has not been disabled. Each remaining column shows the percentage of sinks that appear in
the given context.

Context-Sensitive Sanitization Context-sensitive auto-sanitization addresses the above
issues. Three web frameworks, namely GWT, Google Clearsilver, and Google Ctemplate,
provide this capability. In these frameworks, the auto-sanitization engine performs runtime
parsing, keeping track of the context before emitting untrusted data. The correct sani-
tizer is then automatically applied to untrusted data based on the tracked context. These
frameworks rely on developers to identify untrusted data. The typical strategy is to have
developers write code in templates, which separate the HTML content from the (untrusted)
data variables. For example, consider the following simple template supported by the Google
Ctemplate framework:

Example 2

{{%AUTOESCAPE context="HTML"}}

<html><body><script> function showName() {

document .getElementById("spl") .textContent = "Name: {{NAME}}";} </script>
<span id="spl" onclick="showName()">Click to display name.</span><br/>
Homepage: <a href="{{URI}}"> {{PAGENAME}} </a></body></html>
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Variables that require sanitization are surrounded by {{ and }}; the rest of the text is
HTML content to be output. When the template executes, the engine parses the output
and determines that {{NAME}} is in a JavaScript string context and automatically applies the
sanitizer for the JavaScript string context, namely :javascript_escape. For other variables,
the same mechanism applies the appropriate sanitizers. For instance, the variable {{URI}} is
sanitized with the :url_escape_with_arg=html sanitizer.

Security of Client-side Code Evaluation

In Section 3.2, we identified subtleties of dynamic evaluation of HTML via JavaScript’s
DOM API (Challenge 4). The browser applies different transductions depending on the
DOM interface used (Challenge 3 and listed in Appendix A). Given the complexity of
sanitizing dynamic evaluation, we believe web frameworks should provide support for this
important class of XSS attack vectors too. Ideally, a web framework could incorporate
knowledge of these subtleties, and provide automatic sanitization support during JavaScript
code execution.

Support in web frameworks The frameworks we studied do not support sanitization of
dynamic flows. Four frameworks support sanitization of untrusted data used in a JavaScript
string or number context (Table 3.3). This support is only static: it can ensure that untrusted
data doesn’t escape out during the parsing by the browser, but such sanitization can’t offer
any safety during dynamic code evaluation, given that dynamic code evaluation can undo
previously applied transductions (Challenge 4).

Context-insensitivity issues with auto-sanitization also extend to JavaScript code. For ex-
ample, Django uses the context-insensitive HT'ML-escape sanitizer even in JavaScript string
contexts. Dangerous characters (e.g., \n,\r,;) can still break out of the JavaScript string
literal context. For example, in the Malaysia Crime Application (authored in Django), the
crime.icon variable is incorrectly auto-sanitized with HTML-entity encoding and is an argu-
ment to a JavaScript function call.

Example 3
‘ map.add0verlay(new GMarker(point, {{ crime.icon }})) ‘

Awareness in Web Applications DOM-based XSS is a serious problem in web appli-
cations [106, 105]. Recent incidents in large applications, such as vulnerabilities in Google
optimizer [102] scripts and Twitter [123], show that this is a continuing problem. This
suggests that web applications are not fully aware of the subtleties of the DOM API and
dynamic code evaluation constructs (Challenge 3 and 4 in Section 3.2).

To illustrate this, we present a real-world example from one of the applications we eval-
uated, phpBB3, showing how these subtleties may be misunderstood by developers.
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Example 4

text = element.getAttribute(’title’);

// ... elided ...

desc = create_element(’span’, ’bottom’);

desc.innerHTML = text;
tooltip.appendChild(desc);

In the server-side code, which is not shown here, the application sanitizes the title
attribute of an HTML element by HTML-entity encoding it. If the attacker enters a string
like <script>, the encoding converts it to &1t;script&gt;. The client-side code subsequently
reads this attribute via the getAttribute DOM API in JavaScript code (shown above) and
inserts it back into the DOM via the innerHTML method. The vulnerability is that the browser
automatically decodes HTML entities (through edge 1 in Figure 3.1) while constructing the
DOM. This effectively undoes the server’s sanitization in this example. The getAttribute
DOM API reads the decoded string (e.g., <script>) from the DOM (edge 7). Writing <script>
via innerHTML (edge 6) results in XSS.

This bug is subtle. Had the developer used innerText instead of innerHTML to write the
data, or used innerHTML to read the data, the code would not be vulnerable. The reason is
that the two DOM APIs discussed here read different serializations of the parsed page, as
explained in Appendix A.

The prevalence of DOM-based XSS vulnerabilities and the lack of framework support
suggest that this is a challenge for web applications and web frameworks alike. Libraries
such as Caja and ADsafe model JavaScript and DOM manipulation but target isolation-
based protection such as authority safety, not DOM-based XSS [31, 41]. Protection for this
class of XSS requires further research.

Context Expressiveness

Having analyzed the auto-sanitization support in web frameworks for static HTML evalua-
tion as well as dynamic evaluation via JavaScript, we turn to the support for manual sani-
tization. Frameworks may not provide auto-sanitization but instead may provide sanitizers
which developers can call. This improves security by freeing the developer from (re)writing
complex, error-prone sanitization code. In this section, we evaluate the breadth of contexts
for which each framework provides sanitizers, or the context expressiveness of each frame-
work. For example, a framework that provides built-in sanitizers for more than one context,
say in URI attributes, CSS keywords, JavaScript string contexts, is more expressive than
one that provides a sanitizer only for HTML tag context.

Expressiveness of Framework Sanitization Contexts Table 3.3 presents the expres-
siveness of web frameworks we study and Table 3.4 presents the expressiveness required by
our subject web applications. The key insights are:
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Language Framework HTML | URI URI JS JS Style
tag At- At- String | Num- At-
con- tribute tribute ber or | tribute
tent (ex- (in- Boolean | or Tag
or cluding clud-
non- scheme) | ing
URI scheme)
at-
tribute
Mason [14, 93] . .
Perl Template Toolkit [119] . .
Jifty [75] . .
CakePHP [32] ° °
Smarty Template Engine [112] | e ° .
PHP Yii [141, 70] . .
Zend Framework [144] . .
Codelgniter [39, 38] . .
VB, C#, C++, F# | ASP.NET [16] . .
Ruby Rails [104] . .
Python Django [48] ° ° . P
Java GWT SafeHtml [62] . . .
C++ Ctemplate [43] . . . . . .
Language-neutral ClearSilver [37] . . . . .

Table 3.3: Sanitizers provided by languages

and/or frameworks. For frameworks, we also

include sanitizers provided by standard packages or modules for the language.

e We observe that 9 out of the 14 frameworks do not support contexts other than the

HTML context (e.g., as the content body of a tag or inside a non-URI attribute) and
the URI attribute context. The most common sanitizers for these are HTML entity
encoding and URI encoding, respectively.

4 web frameworks, ClearSilver, Ctemplate, Django, and Smarty, provide appropriate
sanitization functions for emitting untrusted data into a JavaScript string. Only 1
framework, Ctemplate, provides a sanitizer for emitting data into JavaScript outside of
the string literal context. However, the sanitizer is a restrictive whitelist, allowing only
numeric or boolean literals. No framework we studied allows untrusted JavaScript code
to be emitted into JavaScript contexts. Supporting this requires a client-side isolation
mechanism such as ADsafe [41] or Google’s Caja [31].

4 web frameworks, namely Django, GWT, Ctemplate, and Clearsilver, provide sani-
tizers for URI attributes in which a complete URI (i.e., including the URI protocol
scheme) can be emitted. These sanitizers reject URIs that use the javascript: scheme
and accept only a whitelist of schemes, such as http:.

Of the frameworks we studied, we found only one that provides an interface for cus-
tomizing the sanitizer for a given context. Yii uses HTML Purifier [70], which allows
the developer to specify a custom list of allowed tags. For example, a developer may
specify a policy that allows only <b> tags. The other frameworks (even the context-
sensitive auto-sanitizing ones) have sanitizers that are not customizable. That is,
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Application Description LOC HTML | URI URI JS JS No. No.
Con- Attr. Attr. Attr. Num- | Sani- | Sinks
text (excl. | (incl. Con- ber or | tizers
scheme) scheme) text String
Con-
text
RoundCube | IMAP Email Client 19,038 ° ° ° ° ° 30 75
Drupal Content Management System 20,995 ° ° ° ° ° 32 | 2557
Joomla Content Management System 75,785 B ° ° ° 22 538
WordPress Blogging Application 89,504 ° ° ° ° 95 | 2572
MediaWiki Wiki Hosting Application 125,608 ° ° ° ° ° 118 352
PHPBB3 Bulletin Board Software 146,991 ° ° ° ° ° 19 265
OpenEMR Medical Records Management | 150,384 ) ° ° 18 727
Moodle E-Learning Software 532,359 B . ° ° ° 43 | 6282

Table 3.4: The web applications we study and the contexts for which they sanitize.
untrusted content within a particular context is always sanitized the same way. Our
evaluation of web applications strongly invalidates this assumption, showing that ap-
plications often sanitize data occurring in the same context differently based on other
attributes of the data.

The set of contexts for which a framework provides sanitizers gives a sense of how the
framework expects web applications to behave. Specifically, frameworks assume applications
will not emit sanitized content into multiple contexts. More than half of the frameworks we
examined do not expect web applications to insert content with arbitrary schemes into URI
contexts, and only one of the frameworks supports use of untrusted content in JavaScript
Number Or Boolean contexts. Below, we challenge these assumptions by quantifying the set of
contexts for which applications need sanitizers.

Expressiveness of Contexts and Sub-Context Variance in Web Applications We
examined our 8 subject PHP applications, ranging from 19 to 532 KLOC, to understand
what expressiveness they require and whether they could, theoretically, migrate to the ex-
isting frameworks. We systematically measure and enumerate the contexts into which these
applications emit untrusted data. Table 3.4 shows the result of this evaluation. We observe
that nearly all of the applications insert untrusted content into all of the outlined contexts.
Contrast this with Table 3.3, where most frameworks support a much more limited set of
contexts with built-in sanitizers.

More surprisingly, we find that applications often employ more than one sanitizer for
each context. That is, an abstraction that ties a single sanitizer to a given context may
be insufficient. We term this variation in sanitization across code paths sub-context vari-
ance. Sub-context variance evidence suggests that directly migrating web applications to
web frameworks’ (auto-) sanitization support may not be directly possible given that even
context-sensitive web frameworks rigidly apply one sanitizer for a given context.

Sub-context variance is particularly common in the form of role-based sanitization, where
the application applies different sanitizers based on the privilege of the user. We found
that it is common to have a policy in which the site administrator’s content is subject to
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no sanitization (by design). Examples include phpBB, WordPress, Drupal. For such simple
policies, there are legitimate code paths that have no sanitization requirements. To illustrate
this, we present a real-world example from the popular WordPress application which employs
different sanitization along different code paths.

Example 5

WordPress, the popular blogging application, groups users into
roles. A user in the author role can create a new post on the blog
with most non-code tags permitted. An anonymous commenter,
on the other hand, can only use a small number of text formatting
tags. In particular, the latter cannot insert images in comments
while an author can insert images in his post. Note that neither
can insert <script> tags, or any other active content. In both
cases, untrusted input flows into HTML tag context, but the san-
itizer applied changes as a function of the user role.

Most auto-sanitizing frameworks do not support such rich abstractions to support auto-
sanitization specifications at a sub-context granularity. Nearly all sanitization libraries (not
part of web frameworks) are customizable. However, their connection to special role-based
sanitization (or similar cases) are not supported presently. We believe that web frameworks
can fill this gap. Only 1 framework, Yii, provides the flexibility to handle such customizations
using the HTMLPurifier sanitization library. Unfortunately, Yii only provides this flexibility
for the HTML tag context.

Enabling Reasoning of Sanitizer Correctness

Prior research on web applications has shown that developing sanitization functions, espe-
cially custom sanitizers, is tricky and prone to errors [20]. We investigate how the sanitizers
in web frameworks handle this issue. We compare the structure of the sanitizers used in
frameworks to the structure we observe in our subject applications and characterize the
ground assumptions that developers should be aware of.

Blacklists vs. Whitelists We find that most web frameworks structure their sanitizers
as a declarative-style whitelist of code constructs explicitly allowed in untrusted content. For
instance, one sanitization library employed in the Yii is HTML-Purifier [70], which permits a
declarative list of HTML elements like event attributes of special tags in untrusted content.
All of the web applications we studied also employ this whitelisting mechanism, such as
the KSES library used in WordPress [81]. Such sanitizers assume that the whitelist is only
contains a well understood and safe subset of the language specification, and does not permit
any unsafe structures.

In contrast, we find that only 1 subject web framework, viz. Codelgniter, employs a
blacklist-based sanitization approach. Even if one verifies that all the elements on a blacklist
conform to an unsafe subset of the language specification, the sanitizer may still allow unsafe
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parts of the language. For example, Codelgniter’s xss_clean function removes a blacklist of
potentially dangerous strings like document.cookie that may appear in any context. Even if
it removes all references to document.cookie, there still may be other ways for attacker code
to reference cookies, such as via document [¢cookie’].

Correctness of the sanitizers used is fundamental to the safety of the sanitization based
strategy used in web frameworks. Based on the above examples, we claim that it is easier
to verify that a whitelist policy is safe and recommend frameworks adopt such a strategy.

HTML Canonicalization Essential to the safety of sanitization-based defense is that the
user’s browser parse the untrusted string in a manner consistent with the parsing applied by
the sanitizer. For instance, if the context-determination in the frameworks differs from the
actual parsing in the browser, the wrong sanitizer could be applied by the framework.

We observe that frameworks employ a canonicalization strategy to ensure this property;
the web frameworks identify a ‘canonical’ subset of HTML-related languages into which
all application output is generated. The assumption they rely on is that this canonical
form parses the same way across major web browsers. We point out explicitly that these
assumptions are not systematically verified today and, therefore, framework outputs may
still be susceptible to XSS attacks. For example, a recent XSS vulnerability in the HTML
Purifier library (used in Yii) was traced back to “quirks in Internet Explorer’s parsing of
string-like expressions in CSS [69].”

Finally, we point out that sanitization-based defense isn’t the only alternative—proposals
for sanitization-free defenses, such as DSI [98], BLUEPRINT [120] and the Content Security
Policy [113] have been presented. Future frameworks could consider these. Verifying the
safety of the whitelist-based canonicalization strategy and its assumptions also deserves
research attention.

3.4 Related Work

XSS Analysis and Defense Much of the research on cross-site scripting vulnerabilities
has focused on finding XSS flaws in web applications, specifically on server-side code [140, 83,
82, 138, 77, 72,99, 92, 20] but also more recently on JavaScript code [105, 106, 21, 58]. These
works have underscored the two main causes of XSS vulnerabilities: identifying untrusted
data at output and errors in sanitization by applications. There have been three kinds of
defenses: purely server-side, purely browser-based, and those involving both client and server
collaboration.

BLUEPRINT [120], SCRIPTGARD [107] and XSS-GUARD [28] are three server-side so-
lutions that have provided insight into context-sensitive sanitization. In particular, BLUEPRINT
provides a deeper model of the web browser and points out that browsers differ in how the

various components communicate with one another. The browser model detailed in this
work builds upon BLUEPRINT’s model and more closely upon SCRIPTGARD’s formaliza-
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tion [107]. We provide additional details in our model to demystify the browser’s parsing
behavior and explain subtleties in sanitization that the prior work did not address.

Purely browser-based solutions, such as XSSAuditor, are implemented in modern browsers.
These mechanisms are useful in nullifying common attack scenarios by observing HTTP re-
quests and intercepting HTTP responses during the browser’s parsing. However, they do
not address the problem of separating untrusted from trusted data, as pointed out by Barth
et al. [26].

BEEP, DSI and NonceSpaces investigated client-server collaborative defenses. In these
proposals, the server is responsible for identifying untrusted data, which it reports to the
browser, and the browser ensures that XSS attacks can not result from parsing the untrusted
data. While these proposals are encouraging, they require browser and server modifications.
The closest practical implementation of such client-server defense architecture is the recent
content security policy specification [113].

Correctness of Sanitization While several systems have analyzed server-side code, the
SANER [20] system empirically showed that custom sanitization routines in web applica-
tions can be error-prone. FLAX [106] and KUDZU [105] empirically showed that sanitization
errors are not uncommon in client-side JavaScript code. While these works highlight exam-
ples, the complexity of the sanitization process remained unexplained. Our observation is
that sanitization is pervasively used in emerging web frameworks as well as large, security-
conscious applications. We discuss whether applications should use sanitization for defense
in light of previous bugs.

Techniques for Separating Untrusted Content Taint-tracking based techniques [99,
140, 77, 128, 34, 110] as well as security-typed languages [35, 117, 103, 111] aim to address
the problem of identifying and separating untrusted data from HTML output to ensure that
untrusted data gets sanitized before it is output. Web templating frameworks, some of which
are studied in this work, offer a different model in which they coerce developers into explicitly
specifying trusted content. This offers a fail-closed design and has seen adoption in practice
because of its ease of use.

3.5 Conclusions and Future Work

We study the sanitization abstractions provided in 14 web application development frame-
works. We find that frameworks often fail to comprehensively address the subtleties of XSS
sanitization. We also analyze 8 web applications, comparing the sanitization requirements of
the applications against the abstractions provided by the frameworks. Through real-world
examples, we quantify the gap between what frameworks provide and what applications
require.
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Auto-sanitization Support and Context Sensitivity Automatic sanitization is a step
in the right direction. For correctness, auto-sanitization needs to be context-sensitive:
context-insensitive sanitization can provide a false sense of security. Our application study
finds that applications do, in fact, need to emit untrusted data in multiple contexts. How-
ever, the total number of contexts used by applications in our study is limited, suggesting
that frameworks only need to support a useful subset of contexts.

Security of Client-side Code Evaluation DOM-based XSS is a serious challenge in
web applications, but no framework supports sanitization for dynamic evaluation on the
client. Application developers must be particularly alert when using the DOM API. Of
particular relevance to XSS sanitization is the possibility of the browser “undoing” server-
side sanitization, making the application vulnerable to DOM-based XSS.

Context Expressiveness and Sanitizer Correctness Some frameworks offer sanitiza-
tion primitives as library functions the developer can invoke. We find that most frameworks
do not provide sufficiently expressive sanitizers, i.e., the sanitizers provided do not support
all the contexts that applications use. For instance, applications emit untrusted data into
URI attribute and JavaScript literal contexts, but most of the frameworks we study do not
provide sanitizers for these contexts. As a result, application developers must implement
these security-critical sanitizers themselves, a tedious and error-prone exercise. We also find
that sub-context variance, such as role-based sanitizer selection, is common. Only one of the
frameworks we examined provides any support for this pattern, and its support is limited.

Finally, our study identifies the set of assumptions fundamental to frameworks. Namely,
frameworks assume that their sanitizers can be verified for correctness, and that HTML
can be canonicalized to a single, standard form. Developers need to be aware of these
assumptions before adopting a framework.

Future Directions As we outline in this work, the browser’s parsing and transformation
of the web content is complex. If we develop a formal abstract model of the web browser’s
behavior for HTML 5, sanitizers can be automatically checked for correctness. Our browser
model is a first step in this direction. We identify that parts of the web browser are either
transducers or language recognizers. There have been practical guides for dealing with these
issues, but a formal model of the semantics of browsers could illuminate all of the intricacies
of the browser [143]. Verification techniques and tools for checking correctness properties of
web code is an active area of research.

If one can show the correctness of a framework’s sanitizers, we can prove the security
and correctness for code generated from it. Though existing auto-sanitization mechanisms
are weak today, they can be improved. Google AutoEscape is one attempt at this type of
complete sanitization but is currently limited to a fairly restrictive templating language [43].
If these abstractions can be extended to richer web languages, it would provide a basis to
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build web applications secure from XSS from the ground up—an important future direction
for research.
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Chapter 4

Evaluating the Effectiveness of
Content Security Policy

4.1 Introduction

Content injection attacks, and in particular cross-site scripting (XSS) attacks, are a signif-
icant threat to web applications [136, 5]. These attacks violate the integrity of web appli-
cations, steal from users and companies, and erode privacy on the web. Researchers have
focused a great deal of effort at preventing these attacks, ranging from static detection to
dynamic checking of content.

The classic approach to stopping content cross-site scripting attacks is by the careful
placement of sanitizers. Sanitizing, or filtering, is the removal of potentially harmful content
or structure from untrusted data. Sanitization places a heavy burden on developers; they
must identify where untrusted data appears in their application, what that data is allowed
to do, and the context the data appears in on the final page. Unfortunately, these are not
straightforward processes. Sanitization is a very brittle process, prone to error. Besides
often missing untrusted data in their application, it is not always obvious what sanitization
method to apply in what context [135, 107].

In response, several alternatives have been proposed in the literature, most notably,
BEEP [76], BLUEPRINT [120], and Content Security Policy (CSP) [113]. These proposals
suggest very different mechanisms for preventing XSS and, in some of the cases, more gen-
eral content injection. Previously, these have been viewed separate proposals with different
approaches to the same problem. However, we identify these proposals as instances of a
more general notion of client-side HT'ML security policies.

This chapter was previously published at the 2011 USENIX Workshop on Hot Topics in
Security [133].



CHAPTER 4. EVALUATING THE EFFECTIVENESS OF CONTENT SECURITY
POLICY 36

We argue that HTML security policies are superior to sanitization and should be the
core defensive mechanism against content injection in future web applications. However, we
also argue and show that the current proposals for HTML security policies fall short of their
ultimate design goals. We argue that HTML security policies should be at the core of web
application security, but much research still needs to be done in building successful HTML
security policy systems. We put forth several suggestions for future research, but generally
leave next steps as an open problem.

HTML Security Policy Systems We focus on BEEP, BLUEPRINT, and Content Secu-
rity Policy. We examine these systems to understand their respective power and limitations.
While all three provide working systems for expressing and implementing HTML security
policies, CSP is of particular importance because it is deployed in the Firefox [12], Safari [13],
and Chrome [11] web browsers. We evaluate the efficacy of all three, including the first em-
pirical evaluation of CSP on real applications by retrofitting Bugzilla [1] and HotCRP [2]
to use CSP. We conclude that none of these systems solves the content injection or XSS
problems sufficiently:

e BEEP has serious limitations in dealing with dynamic script generation. This is espe-
cially problematic in today’s web frameworks that support and encourage templating
across all types of code. Additionally, it does not provide any support for non-XSS
content injection.

e BLUEPRINT has significant performance problems. These are not superficial; there
are inherent to its approach in avoiding use of the browser’s parser.

e CSP can cause significant performance problems in large applications because of the
restrictions on code it enforces. Additionally, it does not fit well into web framework
the programming models.

Proposals We argue that going forward, web frameworks should use HTML security poli-
cies instead of sanitization as the basis of their protection against content injection. However,
the security community needs to decide on a set of requirements that HTML security poli-
cies should hold going forward. In the end, new HTML security policy systems, and perhaps
new browser primitives, need to be developed by the research community to solve the content
injection problem.

4.2 HTML Security Policies

Content injection occurs when untrusted user input changes the intended parse tree of a
document [28, 98]. In the case of a web page, this happens when a user input is placed on
a page, and the user input contains control structures (such as HTML tags or JavaScript
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code) that the developer did not intend to be present. By definition, this allows an at-
tacker to modify the behavior of the page in unexpected ways, changing the developer’s
intended semantics. XSS is a specific type of content injection where the attacker modifies
the document’s structure to place a script on the page.

Web developers generally use sanitization to defend from content injection, but saniti-
zation can be difficult to get right. Thus, researchers have proposed several other mecha-
nisms for protecting web applications from content injection. Three well known proposals,
BEEP, BLUEPRINT, and Content Security Policy (CSP), are instances of HTML security
policy systems. HTML security policy systems provide mechanisms for an application to
specify how a document is parsed and interpreted by the browser on the client, in contrast
to the syntactic approach of sanitization on the server, where unwanted syntax is removed
before it reaches the client.

In HTML security policy systems, a policy is provided to the browser when a web page
is loaded, and as the browser renders the page, it enforces that the page matches the HTML
security policy. This is particularly useful in the context of a web server providing dynami-
cally generated content where a policy is hard to enforce statically (such as a page containing
user comments, a news aggregator, etc.).

The advantages of HT'ML security policy systems over sanitization are several fold. The
key improvement is that developers do not need to search for the precise place in code that
untrusted data may appear. In sanitization, these places are hard to find, and even when
found, it is not necessarily clear what sanitizer to apply (i.e. does the untrusted data appear
between HTML tags, or is it part of an attribute, or another context entirely?) [135]. In
comparison, one of the goals of HTML security policy systems is to specify allowed behavior,
not to limit the syntax at these precise points.

Additionally, in HTML security policy systems, there is an explicit policy to enforce, in
contrast to the ad hoc application of sanitizers. This suggests that HT' ML security policies are
easier to audit than sanitization. A developer can check a policy against their security model,
rather than searching an application for sanitizers and building a policy from that.

Because of these properties, and the unreliability of and difficulty in using sanitizers, we
argue that HTML security policy systems should be used going forward in web applications
to help solve the content injection problem instead of sanitization. However, the current set
of available HTML security policy systems have several major problems in their design.

Existing Policy Systems

While there are many different HTML security policy systems, we focus on three of the most
cited, BEEP [76], BLUEPRINT [120] and CSP [113]. These three systems take two very
different approaches to the same problem: how to stop untrusted content from injecting
additional structure into a web page. They are all particularly concerned with cross-site
scripting attacks.
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BEEP BEEP focuses on XSS instead of the more general content injection problem. BEEP
implements a whitelist of trusted scripts that may execute and rejects the execution of any
script not on the whitelist. Thus, only trusted, developer-built scripts may execute on the
client, and any injected scripts will fail to do so.

Unfortunately, BEEP’s handling of dynamically generated scripts does not match the web
framework model. BEEP requires that the hash of a script be statically determined or that
the script is added by a trusted script. By definition, if the script is generated dynamically,
its hash cannot be determined statically. One can imagine a system with scripts that add
dynamically generated scripts, but this is very different from how web applications and
frameworks currently handle code generation.

Additionally, BEEP does not handle content injection other than XSS, which have re-
cently been seen in real sites [121]. Also, attacks on BEEP have been developed similar to
return-to-libc attacks [19]. While more complex than traditional XSS, the existence of such
attacks is cause for concern.

BLUEPRINT BLUEPRINT presents a system for parsing document content using a
trusted, cross-platform, JavaScript parser, rather than browsers’ built in parsers. The au-
thors view HTML parsers in different browsers as untrustworthy because of browser quirks
and view the cross-site scripting problem as fundamentally arising from this. Their approach
provides the browser with a “blueprint” of the structure of the page, and a JavaScript library
builds the page from the blueprint rather than trusting the browser’s HI'ML parser.

This “blueprint” is an HTML security policy. The server parses the document itself and
generates the structural blueprint of the document. This is communicated to the browser
where it is used by the BLUEPRINT JavaScript library to build the document. The blueprint
is a step-by-step instruction set for the structure of the page, and if any of the content violates
this structure, it violates the policy and is removed.

One of the key assumptions of the authors is that server applications “know how to deal
with untrusted content.” Unfortunately, the authors make this assumption without defend-
ing it. There certainly are numerous cases of server applications that do not understand
how to properly deal with untrusted content; this is the basis of SQL injection attacks [131].
A tool that could help well-intentioned developers stop potentially untrusted content would
help to alleviate this.

Additionally, BLUEPRINT unfortunately suffers from several performance problems. In
the original paper, the authors report 55% performance overhead in applying BLUEPRINT
to Wordpress and 35% performance overhead in applying it to MediaWiki. Because of its
very nature, BLUEPRINT cannot use the efficient parsing primitives of the browser; it relies
entirely on building the document from the blueprint with the JavaScript parser.

Content Security Policy (CSP) To our knowledge, CSP is the first HTML security
policy system to be implemented and released by one of the major browser vendors (in Firefox
4). CSP takes a different view of the browser than BLUEPRINT. Instead of “not trusting”
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the browser’s parsing decision, CSP implements a declarative policy that the browser then
enforces on the application. CSP trusts the browser for enforcement, conceding that an
application may be flawed.

CSP does this by developing a large set of properties that may be set on a per page basis.
All trust is based on the page level by CSP properties that state trusted servers for scripts,
images, and a variety of other content. This provides a strong fail-safe property. Because the
entire page is covered by the policy, the policy will apply to all untrusted content wherever
it appears on the page.

The types of properties that CSP provides include trusted servers for images, scripts,
and other content, but it also includes one particularly important property. This is the
inline-scripts property, which, by default, is disabled. When disabled, this means that
the browser will not allow any scripts to execute within the page; the only scripts that may
be run are ones included by the src attribute of a <script> tag. This is fundamentally how
CSP prevents XSS attacks. Because no script content is allowed to run within the page,
and the developer may set a small number of trusted servers for scripts to come from, an
injection attack can add a script but it either will not run because it is inline, or it will not
run because it will have a src pointing to an attacker’s untrusted server.

CSP rules are a declarative way of specifying the dynamic semantics of a web page.
CSP specifies a set of semantic rules on a per page basis. However, content injection is a
syntactic problem where the abstract syntax tree of a document is modified by an untrusted
source [114, 98]. It would be possible to keep adding semantic rules to CSP, but a new rule
would be needed for each semantic consequence of all possible syntactic changes. Because of
this, CSP only provides rules for stopping a small set of injection attacks, namely XSS and
specific types of content (such as <iframe> tags whose src attribute points to an untrusted
server). CSP does not stop general content injection, and for it do so would require an ever
growing set of rules.

CSP’s declarative, page-level, fail-safe architecture is enticing. However, it places se-
vere restrictions on how web application pages can be structured. We evaluate how these
restrictions affect real web applications.

4.3 Evaluating the Application of CSP

To evaluate the efficacy of CSP as an HTML security policy, we apply it to two popular, real
world applications. We determine the HTML security policies necessary to stop injection
attacks and apply the policies to the applications. We modify the applications to work with
these policies. We evaluate the performance of these applications using CSP, and measure
the effort of modifying these applications.
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Methodology

The applications we experiment on are Bugzilla [1] and HotCRP [2]. Bugzilla is a web
application for organizing software projects and filing and tracking bugs, used by many large
companies and open source projects, including RedHat, Mozilla, Facebook, and Yahoo! [30].
HotCRP is a conference manager used for paper submission and review by several major
conferences.

We retrofit the applications to execute properly with a known CSP policy that blocks
XSS. As a manual process, we run the program and explore its execution space by clicking
through the application. We modify the applications to correct any violations of the CSP
policy by the applications. This does not provide completeness but we feel this most accu-
rately represents what a developer would need to do to apply CSP to her application. While
static and dynamic analysis tools have the potential to help, we are unaware of such tools
for the Template Toolkit [119] language that Bugzilla is written in.

Application Modifications

The major part of transforming Bugzilla and HotCRP is converting inline JavaScript to
external JavaScript files that are sourced by the HTML page. Because CSP policies are of
page level granularity, it cannot reason about individual scripts on a page. Thus, in order
to prevent XSS with CSP, it must reject inline scripts and only source scripts from trusted
servers. The consequence of this is that completely trusted scripts must be moved to separate

files.

Data Access In the implementations of Bugzilla and HotCRP, there are a variety of
inline scripts that reference data and variables generated by the templating languages. such
as configuration information or the number of search results. This data is not untrusted
input. Unfortunately, when the scripts are segregated into separate files from the templated
HTML, the variables and data can no longer be referenced by the templating language in the
script source file. This is because the templating languages for both Bugzilla and HotCRP
treat the individual page as a scoping closure; variables are not shared between separately
sourced pages. We address this by creating additional hidden HTML structure and storing
the necessary data in an attribute. Later, we extract this via additional JavaScript on the
client.

DOM Manipulation DOM manipulation becomes necessary in a number of other con-
texts as well. Take as an example dynamically generated JavaScript. In HotCRP there
are several scripts that interact with lists of papers. For each of the papers in the lists,
there are inline JavaScript handlers for each entry, such as onclick handlers. Because
CSP does not allow inline scripts, including handlers, these handlers must be inserted dy-
namically by JavaScript. Thus, for each paper entry in the list, we use PHP to generate
a span with a predictable name, such as name="paper-name-span", and also contains a
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Page No Inline JS  Async JS
index.php 14.78% £ 4.5  —3.0% + 4.25
editsettings.php 6.3% + 4.7 5.1% 4+ 0.92
enter_bug.cgi 57.6% + 2.5 44.2% +2.1
show_bug.cgi 51.5% + 2.8 4.0% + 3.0

Table 4.1: Percent difference in performance between modified Bugzilla and original with
95% confidence intervals.

Page No Inline JS Async JS JS Template
index.php 45.3% +6.3  37.2% +5.0  27.9% £+ 3.7
search.php 52.9% +54  504% 3.7 20.2% +3.9
settings.php 233% +2.7 16.1% +8.2 —
paper.php 61.1% +9.5 585%+87 19.1% 4 2.5
contacts.php | 67.8% +4.8  35.5% +4.9 —

Table 4.2: Percent difference in performance between modified HotCRP and original with
95% confidence intervals and jQuery Templating performance.

data-paper-name attribute. When the JavaScript executes, it searches for all elements with
the name paper-name-span, and extracts the name of the element to add a handler to.

Additional Application Logic Another pattern we observe is the required movement
of templating logic into JavaScript. Because the JavaScript is no longer inlined, the condi-
tional branching in the templates no longer can affect it. Thus, it must replicate the same
conditionals and checks dynamically. Using the same techniques as we discussed earlier,
we replicate where necessary templating conditionals in JavaScript based on data passed in
DOM element attributes. This adds additional performance costs to the execution, but also
provides additional points of failure for the transformation.

Total Modifications Overall, the types of modifications to Bugzilla and HotCRP closely
mirrored one another. This was particularly interesting given that they used two unre-
lated templating frameworks, Template Toolkit and PHP, respectively. In both cases, it was
necessary to transfer data and variables to JavaScript through HTML structure, create sig-
nificant additional DOM manipulations to build the application, and to move and duplicate
application logic from the server to the client.

Our modifications were substantial, adding 1745 lines and deleting 1120 lines of code in
Bugzilla and adding 1440 lines and deleting 210 lines of code in HotCRP. We also observed
an increase in the number of GET requests and data transferred for Bugzilla and HotCRP.
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Performance

The performance of the applications are affected in several different ways. During the appli-
cation modification, we observe several particular modifications that relate to performance:

e Additional script source files In order to remove inline scripts from Bugzilla and
HotCRP, we add a number of new script source files. When possible, we consolidate
what were separate inline scripts into one source file, but this is not always possible.
For example, if a script uses document.write, the script must be placed in a specific
location. Additionally, many scripts are conditional on templating branching, and
should only occur if specific elements exist or particular properties hold. These extra
files have the potential to add latency to page load and execution.

¢ New DOM manipulations As discussed above, to transfer data and variables from
the template to the script, we attach the data to HTML elements and use JavaScript to
extract the data through the DOM. These extra DOM accesses can be costly operations
in what would have otherwise been static data.

Results Our performance evaluation results can be seen in Tables 4.1 and 4.2 for a random
set of pages for each application, measured in the Chrome web browser network performance
tool. After our experiments finished, we observed that one of the major performance slow
downs appeared to be the synchronous loading of script sources. Since our modifications
required an increase in the number of external scripts, we modified the pages to use the
async attribute in the <script> tags where possible. This allows those scripts to load
asynchronously. This change substantially improved the performance of the applications,
but in most cases, not enough to approach the original performance.

Our results show that using CSP for Bugzilla and HotCRP is both a complex task and
may harm performance. We show that CSP requires changes to how both applications are
structured. While CSP has several desirable properties, such as page level granularity and
a fail safe architecture, this shows that, like BEEP and BLUEPRINT, it would be difficult
to deploy with a secure setting on complex applications.

4.4 Related Work

There is extensive work how to discover and eliminate XSS vulnerabilities in web applica-
tions [72, 138, 82, 83, 140]. There has been work on both eliminating these vulnerabilities
on the server and in the client. This work has focused on treating XSS as a bug to be
eliminated from an application, keeping XSS vulnerabilities from even reaching production
systems. This means that much of this work is static analysis, but some work has focused
on dynamic techniques on the server [132]. Other work, specifically KUDZU [105] and
FLAX [106], have focused on symbolic execution of client-side JavaScript.

Sanitization, or content filtering, is the elimination of unwanted content from untrusted
inputs. Sanitization is applied explicitly by an application or a framework to the untrusted
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content. Sanitization is almost always done on the server; generally, the goal is to remove
the unwanted content before it reaches the client. Sanitization is usually done as a filter over
character elements of string looking for “control” characters, such as brackets in HT'ML.
XSS-GUARD [28] and ScriptGard [107] argue that it is necessary to look at sanitization as
a context sensitive problem.

There have also been a number of other HTML security policy systems proposed [84, 95].
We focused on three of the most discussed in the literature, but future evaluations would, of
course, need to take these into account as well.

4.5 Towards HTML Security Policies

While current HTML security policy systems are not sufficient for today’s web applications
because of their performance problems and requirements on how applications are built, they
provide very enticing properties. Research should evaluate HTML security policies and how
to build better HT'ML security policy systems. Towards this goal, we start the conversation
with several points and questions about HTML security policy systems.

e Researchers should determine the set of properties that an HTML security policy sys-
tem should have. For example, CSP’s page-level granularity is simple as a policy, but
puts an undue burden on developers in how they write and retrofit applications. Is
this the right trade-off to make?

e From the problems of the systems we observe today, what can we learn? We identified
a number of properties systems should not have, such as extensive restrictions on how
code is written. Should we just accept these problems to reap the benefit of HTML
security policies?

e Combining these systems may be fruitful. For example, a combination approach of
BEEP and CSP that allows inlined scripts if they are on a BEEP-like whitelist but
also allows external scripts may be an improvement in usability over either system
independently. What features can we extract and combine from current systems to
build new ones?

e Should new HTML security policy systems work in legacy browsers or focus on state-
of-the-art browsers? For example, it seems likely that BLUEPRINTSs performance
shortcomings could be addressed with better browser support. On the other hand,
retrofitting applications for new browser primitives can be a struggle, as seen with

CSP.
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4.6 Conclusion

HTML security policies should be the central mechanism going forward for preventing content
injection attacks. They have the potential to be much more effective than sanitization.
However, the HTML security policy systems available today have too many problems to be
used in real applications. We presented these issues, including the first empirical evaluation
of CSP on real-world applications. New HTML security policy systems and techniques
need to be developed for applications to use. As a first step, research needs to identify the
properties needed in HTML security policy systems.

Acknowledgments Thanks to my co-authors of this work, Adam Barth and Dawn Song [133],
for working with me and giving their permission for this work to appear in this thesis.
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Chapter 5

Static Enforcement of Policies for
Advertisements

5.1 Introduction

Much of the web economy is fueled by advertising revenue. In a typical advertising scenario,
a publisher rents a portion of his or her web page to an advertising network, who, in turn,
sublets the advertising space to another advertising network until, eventually, an advertiser
purchases the impression. The advertiser then provides content (an advertisement) that
the browser displays on the user’s screen. Recently, malicious advertisers have sought to
exploit these delegated trust relationships to inject malicious advertisements into honest web
sites [78, 97]. These attacks are particularly worrying because they undermine confidence in
the core of the web economy.

For example, a malicious advertisement exploited The New York Times web site [126]
on September 13, 2009. Although most of its advertisements are served via ad networks,
The New York Times also includes some advertisements directly from advertisers’ servers.
In this case, a malicious advertiser posed as Vonage and bought an advertisement. The
advertiser then changed the advertisement to take over the entire window and entice users
into downloading fake anti-virus software. The New York Times removed the ad but only
after a number of visitors were affected.

To protect publishers and end users, advertising networks have been experimenting with
various approaches to defending against malicious advertisements. Although there are a
wide variety of approaches, ranging from legal remedies to economic incentives, we focus on
technological defenses. At its core, displaying third-party advertisements on a publisher’s web
site is a special case of a mashup. In this chapter, we study whether existing techniques are

This chapter was previously published at the 2010 Network and Distributed System Se-
curity Symposium [53].
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Publisher
Syndicated Major
Advertiser Advertising Advertising Web Page
Network Network
<script>
</script>

Figure 5.1: A publisher sells space on his or her page to an advertising network. This
space may be resold through multiple advertising networks, until it is sold to an advertiser,
who provides an advertisement written in a secure JavaScript subset. The advertisement is
checked for safety by each advertising network, in turn, and ultimately served to visitors of
the publisher’s web page.

well-suited for containing advertisements and propose improvements to mashup techniques
based on static verifiers.

Static verifiers, such as ADsafe [41], Dojo Secure [145], and Jacaranda [44], are a particu-
larly promising mashup technique for advertising. In this approach, the advertising network
(and one or more of its syndicates) verifies that the advertisement’s JavaScript source code
conforms to a particular subset of the JavaScript language with desirable containment prop-
erties (see Figure 5.1). The precise JavaScript subset varies between systems, but the central
idea is to restrict the guest advertisement to a well-behaved subset of the language in which
the guest can interact only with object references explicitly and intentionally provided to
the guest by the host, thus preventing the guest from interfering with the rest of the page.

In this chapter, we focus on evaluating and improving the containment of safe JavaScript
subsets that use static verification. Static verifiers are appealing because they provide fine-
grained control of the advertisement’s privileges. For example, the hosting page can restrict
the advertisement to instantiating only fully patched versions of Flash Player, preventing a
malicious advertisement from exploiting known vulnerabilities in older versions of the plug-
in. However, existing static verifiers do not provide perfect containment. To properly contain
advertisements, these systems impose restrictions on the publisher: the publisher must avoid
using certain JavaScript features that let the advertisement breach containment.

These static verifiers impose restrictions on publishers because of a design decision shared
by the existing static verifiers: the verifiers restrict access to object properties using a static
blacklist. The blacklist prevents the guest from accessing properties, such as __proto__, that
can be used to breach containment. The designers of the subsets warrant that their blacklist
is sufficient to prevent an advertisement from breaching containment on an otherwise empty
page in their supported browsers (or else the subset would always fail to contain advertise-
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ments), but the blacklist approach does not restrict access to new properties introduced by
the publisher. For example, a publisher might add a right method to the string prototype
that has not been vetted by the subset designer.

This restriction raises a natural question: how commonly do publishers violate this re-
quirement? If publishers rarely expose new methods (or rarely expose exploitable methods),
then this restriction is fairly innocuous. If publishers commonly expose methods that are
exploitable, however, then we ought to consider improving these mashup techniques. To
answer this question, we designed and implemented an analysis tool that detects which host
methods are exposed to guest advertisements. We ran our tool on the non-adult web sites
in the Alexa US Top 100 [15] to determine (1) how often sites add methods to prototypes
and (2) how many of these methods could be used to breach containment. To measure (1),
we rendered the web sites in an instrumented browser that recorded the “points-to” relation
among JavaScript objects in the JavaScript heap. Our tool then analyzed the heap and
outputted the source code of methods created by the hosting page that would have been ex-
posed to an ADsafe-verified advertisement. To answer (2), we manually analyzed the source
code of these methods to determine which sites would have been exploitable by a malicious
ADsafe-verified advertisement.

Of the non-adult web sites in the Alexa US Top 100, we found that 59% (53 of 90)
exposed new properties to the guest and that 37% (33 of 90) of these sites contained at
least one method that could be exploited by an ADsafe-verified advertisement to mount a
cross-site scripting (XSS) attack against the publisher. Although the publisher can avoid
exposing exploitable methods, even seemingly innocuous methods are exploitable, such as
this implementation of right found on people.com:

String.prototype.right = function(n) {
if (n <= 0) {
return "";
} else if (n > String(this).length) {
return this;
} else {
var 1 = String(this).length;
return String(this).
substring(l, 1 - n);
}
}

We discuss the exploit in detail in Section 5.4. Of the sites with more than 20 exposed
properties, only tagged.com managed to avoid exposing an exploitable method.

Instead of requiring publishers to vet their exposed methods, we propose eliminating this
attack surface by replacing the property blacklist with a whitelist, making static verifiers
more robust. Using a technique similar to script accenting [33], we prevent the guest adver-
tisement from accessing properties defined by the hosting page unless those properties are
explicitly granted to the guest. Specifically, we restrict the guest to a namespace by requiring
all the guest’s property names to be prefixed with the guest’s page-unique identifier (which
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already exists in ADsafe). A guest restricted in this way will not be able to access methods
added to the prototype objects by the host because the names of those methods are not in
the guest’s namespace.

We show that our safe JavaScript subset is as expressive and as easy-to-use as ADsafe
by implementing a simple compiler that transforms any ADsafe-verified guest into our pro-
posed subset by prepending the namespace identifier to all property names. Our compiler is
tdempotent: the compiler does not alter code that is already contained in the subset. This
property lets us use our compiler as a static verifier for the subset. To check whether a piece
of JavaScript code conforms to the subset, one need only run the code through the com-
piler and check whether the output of the compiler is identical to the input. Idempotency
lets each advertising network in the syndication chain apply the compiler to each advertise-
ment without worrying about transforming the advertisement more than once. To protect
against a malicious advertising network, the downstream parties (e.g., advertising networks
or publishers) can verify each advertisement.

Contributions. We make two main contributions:

e We show that existing static verifiers fall short of defending against malicious ad-
vertisements because many publisher web sites use JavaScript features that let the
advertisements breach containment.

e We propose a modification to these static verifiers that lets publishers host malicious
advertisements without requiring the publishers to rewrite their JavaScript.

Organization. The remainder of this chapter is organized as follows. Section 5.2 surveys
related work. Section 5.3 details safe JavaScript subsets based on statically verified con-
tainment. Section 5.4 describes our experiment for detecting breaches of containment and
reports the results of the experiment. Section 5.5 proposes Blancura, a safe JavaScript subset
based on whitelisting. Section 5.6 concludes.

5.2 Related Work

In this section, we survey related work, which falls into two categories: (1) techniques or
experiments related to those described herein and (2) other approaches for constructing
secure mashups.

Related Techniques and Experiments

In previous work [25], we used our JavaScript heap analysis framework to find browser bugs
that cause cross-origin JavaScript capability leaks and compromise the browser’s implemen-
tation of the same-origin policy. Our framework consists of two pieces: an instrumented
browser that records the “points-to” relation among JavaScript objects in the JavaScript



CHAPTER 5. STATIC ENFORCEMENT OF POLICIES FOR ADVERTISEMENTS 49

heap and an algorithm for detecting “interesting” edges. In this chapter, we reuse the first
piece of the framework in our experiment but replace the second piece with a new algorithm
that colors nodes based on whether or not they are accessible to an advertisement running
by itself on the empty page. In contrast, our previous algorithm detects pointers leaked
from one origin to another, which is not applicable in this setting because all the objects
that participate in this sort of mashup are contained in the same origin.

In a series of papers [89, 88, 87|, Maffeis, Taly, and Mitchell develop a formal semantics
for JavaScript and prove the correctness of a specific static verifier (based on FBJS) in their
formal model. In the course of writing their proof, they discovered that the host page can
compromise its security by extending the built-in prototype objects. They reported this
issue to the designers of ADsafe, who added a restriction on the host’s behavior to ADsafe’s
documentation. However, despite recognizing the issue, the language they propose [88] has
the same limitations as other blacklist-based static verifiers. We recommend that they adopt
our approach and replace their property-name blacklist with a whitelist.

Finally, Yue and Wang study how often web sites use potentially dangerous JavaScript
language features, such as eval [142]. Similar to our methodology, the authors render the
web pages in question using an instrumented browser. Unlike their study, ours is focused
on a specific security issue (extending the built-in prototype objects in a way that lets a
malicious advertisement breach containment), whereas their study measures a number of
general “security hygiene” properties.

Secure Mashup Designs

Safely displaying third-party advertisements is a special case of the more general secure
mashup problem in which an integrator (e.g., a publisher) attempts to interact with a col-
lection of untrusted gadgets (e.g., advertisements). The general mashup problem is more
difficult than the advertising problem because general mashup techniques aim to provide
a high degree of interactivity between the integrator and the gadgets and also among the
gadgets themselves.

A number of researchers propose mashup designs based on browser frames (see, for ex-
ample, [73, 130, 46, 40, 24]). In these designs, the gadget can include arbitrary HTML and
JavaScript in a frame. The integrator relies on the browser’s security policy to prevent the
gadget from interfering in its affairs. In general, these frame-based designs cover a num-
ber of use cases, including advertising, but they have a coarse-grained privilege model. For
example, HTML5’s sandbox attribute [8] can restrict the frame’s privileges in a number of
enumerated ways, but language-based designs can grant finer-grained privileges not preor-
dained by browser vendors. Specifically, a language-based mashup can restrict the gadget
to certain (e.g., fully patched) versions of specific plug-ins (e.g., Flash Player), whereas the
sandbox attribute is limited to allowing or denying all plug-ins.

Gatekeeper [56] is a “mostly static” enforcement mechanism designed to support a rich
policy language for complex JavaScript widgets. Although mostly a static analyzer, Gate-
keeper uses runtime enforcement to restrict some JavaScript features, such as eval. To confine
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widgets, Gatekeeper analyzes the whole JavaScript program, including the page hosting the
widget. This use of whole program analysis makes Gatekeeper an awkward mechanism for
restricting the privileges of advertisements because the advertising network typically does
not have the entire source code of every publisher’s web site.

Like the static verifiers we study in this chapter, dynamic enforcers, such as Caja [31]
and Web Sandbox [4], restrict gadget authors to a subset of the JavaScript language with
easier-to-analyze semantics. Unlike static verifiers, dynamic enforcers transform the source
program by inserting a number of run-time security checks. For example, Caja adds a
dynamic security check to every property access. These dynamic enforcement points give
these designs more precise control over the gadget’s privileges, typically letting the mashup
designer whitelist known-good property names.

Inserting dynamic access checks for every property access has a runtime performance
cost. To evaluate the performance overhead of these dynamic access checks, we used the
“read” and “write” micro-benchmarks from our previous study [25], which test property
access time. We ran the benchmarks natively, translated by each of Caja’s two translators
(Cajita and Valija), and translated by Web Sandbox. We modified the existing benchmarks
in three ways:

1. We modified our use of setTimeout between runs to conform to the JavaScript subset
under test by using a function instead of a string as the first argument.

2. Instead of running the benchmark in the global scope, we ran the benchmark in a local
scope created by a closure. This improved the Valija benchmark enormously because
accessing global variables in Valija is extremely expensive.

3. For Cajita and Valija, we reduced the number of iterations from one billion to one
million so that the benchmark would finish in a reasonable amount of time. For
Microsoft Web Sandbox, we reduced the number of iterations from one billion to 10,000
because the Microsoft Web Sandbox test bed appears to have an execution time limit.

We ran the benchmarks in Firefox 3.5 on Mac OS X using the Caja Testbed [7] and the
Microsoft Web Sandbox Testbed [96].

Our findings are summarized in Table 5.1. The Cajita translation, which accepts a
smaller subset of JavaScript, slows down the two micro-benchmarks by approximately 20%.
Even though Cajita adds an access check to every property access, the translator inlines
the access check at every property access, optimizing away an expensive function call at the
expense of code size. Valija, which accepts a larger subset of JavaScript, slows down the
read and write micro-benchmarks by 1493% and 1000%, respectively. Valija translates every
property access into a JavaScript function call that performs the access check, preventing
the JavaScript engine from fully optimizing property accesses in its just-in-time compiled
native code. Microsoft Web Sandbox performs similarly to Valija because its translator
also introduces a function call for every property access. More information about Caja
performance is available on the Caja web site [9].
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read write
Cajita 21% 20%
Valija 1493% 1000%
Microsoft Web Sandbox 1217%  634%

Table 5.1: Slowdown on the “read” and “write” micro-benchmarks, average of 10 runs.

Dynamic enforcers are better suited for the generic mashup problem than for the adver-
tising use case specifically. In particular, advertising networks tend to syndicate a portion
of their business to third-party advertising networks. When displaying an advertisement
from a syndication partner, an advertising network must verify that the advertisement has
been properly transformed, but verifying that a dynamic enforcer’s transformation has been
performed correctly is quite challenging. By contrast, static verifiers are well-suited to this
task because each advertising network in the syndication chain can run the same static
verification algorithm.

5.3 Statically Verified Containment

One popular approach to designing a secure JavaScript subset is to statically verify contain-
ment. This approach, used by ADsafe [41], Dojo Secure [145], and Jacaranda [44], verifies
that the contained code is in a well-behaved subset of the JavaScript language. In this sec-
tion, we describe the characteristics and limitations of the current languages that use this
approach.

One important use of these languages is to prevent “guest” code (e.g., advertisements)
from interfering with the “host” web page running the guest code. The guest script should
be contained by the language to run as if it were run by itself on an otherwise empty page.
ADsafe is specifically intended for this use [41], and proponents of Dojo Secure and Jacaranda
also envision these languages used for this purpose [45, 145].

Containment Architecture

Secure JavaScript subsets that use statically verified containment prevent guests from using
three classes of language features, described below. If left unchecked, a guest could use these
language features to escalate its privileges and interfere with the host page. The details of
these restrictions vary from language to language. For the precise details, please refer to the
specifications of ADsafe, Dojo Secure, and Jacaranda.

e Global Variables. These languages prevent the guest script from reading or writing
global variables. In particular, these languages require that all variables are declared
before they are used (to prevent unbound variables from referring to the global scope)
and forbid the guest from obtaining a pointer to the global object (to prevent the guest
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from accessing global variables as properties of the global object). For example, these
languages ban the this keyword, which can refer to the global object in some contexts.

e Dangerous Properties. Even without access to global variables, the guest script
might be able to interfere with the host page using a number of “special” properties of
objects. For example, if the guest script were able to access the constructor property
of objects, the guest could manipulate the constructors used by the host page. The
languages implement this restriction by blacklisting a set of known-dangerous property
names.

e Unverifiable Constructs. Because dynamically generated scripts cannot be verified
statically, these languages also ban language constructs, such as eval, that run dynamic
script. In addition to dynamic code, the languages also ban dynamic property access via
the subscript operator (e.g., foo[bar]) because bar might contain a dangerous property
name at run time. These languages typically do allow dynamic property access via a
library call, letting the library check whether the property being accessed at runtime
is on the blacklist, and if not, allow the access.

These languages enforce the above-mentioned restrictions using a static verifier. The verifier
examines the source code of the guest script and checks whether the script adheres to the
language’s syntactic restrictions. In typical deployments, these languages provide the guest
script a library for interacting with the host page. For example, ADsafe provides widgets
with a jQuery-style library for accessing a subset of the hosting page’s Document Object
Model (DOM). These libraries typically interpose themselves between the guest script and
the host objects, preventing the guest from interacting with the host in harmful ways. For
example, the library might restrict the guest to part of the DOM by blocking access to the
parentNode. Even in languages that statically verify containment, these libraries often involve
dynamic access checks.

Limitations

ADsafe, Dojo Secure, and Jacaranda all block access to dangerous properties using a black-
list. When analyzing a guest script, the static verifier ensures that the script does not use
these specific property names. This approach works well on the empty page where the set
of property names is known (at least for a fixed set of browsers), but this approach breaks
down if the host inadvertently adds dangerous properties to built-in object prototypes be-
cause these new properties will not be on the verifier’s blacklist [88].

When the host page extends the built-in object prototypes by adding new properties,
those properties are visible on all objects from that page. For example, if the host page
added the function right to String.prototype, then the right property would be visible on all
strings because the JavaScript virtual machine uses the following algorithm to look up the
value of a property of an object:
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1. Check whether the property exists on the object itself. If so, return the value of the
property.

2. Otherwise, continue searching for the property on the object’s prototype (identified by
the __proto__ property), returning the value of the property if found.

3. If the object does not have a prototype (e.g., because it’s the root of the prototype
tree), then return undefined.

All the prototype chains in a given page terminate in the Object.prototype object. If the host
page adds a property to Object.prototype, the property will appear on all objects in the page.
Similarly, adding a property to String.prototype Or Array.prototype causes the property to
appear on all strings or arrays (respectively).

For this reason, ADsafe explicitly admonishes host pages not to extend built-in prototypes
in dangerous ways:

None of the prototypes of the builtin types may be augmented with methods
that can breech [sic] ADsafe’s containment. [41]

However, ADsafe also says that “ADsafe makes it safe to put guest code (such as third party
scripted advertising or widgets) on any web page” [41]. These two statements appear to be
in conflict if web sites commonly augment built-in types with methods that breach ADsafe’s
containment.

5.4 Detecting Containment Breaches

In this section, we evaluate whether existing static verifiers can be used to sandbox advertise-
ments on popular web sites. We automatically detect “unvetted” functions exposed to guest
scripts and then examine these function to determine whether they introduce vulnerabilities
that could be exploited if the page hosted ADsafe-verified ads.

Approach

To detect when objects created by the host page are accessible to the guest, we load the host
page in an instrumented browser. The instrumented browser monitors JavaScript objects as
they are created by the JavaScript virtual machine. Our instrumentation also records the
“points-to” relation among JavaScript objects. Whenever one object is stored as a property
of another object, we record that edge in a graph of the JavaScript heap.

To determine whether an object created by the host page is accessible to the guest, we
compare the set of JavaScript objects accessible to the guest script on the empty page with
the set accessible to the guest script on the host page. We call an edge from an object in
the first set to an object in the second set suspicious. The designers of the secure JavaScript
subset vet the objects accessible to the guest on the empty page to ensure that guest code
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Figure 5.2: Depiction of a simple heap graph. In (a), all nodes are vetted nodes. In (b),
a suspicious edge has been detected. The host code has added a pointer that provides the
guest code with access to an unvetted object. The suspicious edge points from the prototype
of a built-in object to a method defined by the host.

cannot breach containment using those objects (or else the subsets would fail to be secure
on virtually every page), but the guest script might still be able to leverage suspicious edges
to escape the sandbox.

Not all suspicious edges are exploitable. For example, if the host exposes only the identity
function to the guest, the guest cannot leverage this function to escalate its privileges.
However, if the host defines a function that calls eval on its argument and exposes that
function to the guest script, then the guest script can compromise the host completely. To
determine whether a suspicious edge lets a guest breach containment, we examined the source
code of newly accessible functions. If we are able to construct a proof-of-concept guest script
that exploits such a function, we say that the host page has wviolated the containment policy.

Design

To compute the set of suspicious edges, we classify objects in the host page’s JavaScript heap
into two sets:

e Vetted. The wvetted objects are the JavaScript objects accessible by the guest script
on the empty page. In particular, the objects created by the guest script itself are
vetted, as are objects reachable from those objects on the empty page. We rely on the
designer of the secure JavaScript subset to ensure that these objects are safe for the
guest script to access.



CHAPTER 5. STATIC ENFORCEMENT OF POLICIES FOR ADVERTISEMENTS 55

e Unvetted. The unvetted objects are the JavaScript objects that are not accessible
by the guest script on the empty page. For example, all the objects created by the
host page are unvetted because those objects are not present on the empty page. As
another example, the document object is unvetted because it is not accessible by the
guest script on the empty page, even though document exists on the empty page.

We use a mazimal guest to detect the set of vetted objects. The maximal guest accesses the
set of built-in objects allowed by the rules of the safe JavaScript subset.! Note that creating
multiple instances of these objects does not expand the set of built-in objects reachable by
the guest.

We classify the objects in the JavaScript heap for a given page as vetted or unvetted
using a two phase algorithm. We load the page in question via a proxy that modifies the
page before it is rendered by an instrumented browser.

e Phase 1: Before loading the page’s HTML, the proxy injects a script tag containing the
maximal guest. The instrumented browser seeds the set of vetted objects by marking
the objects created by the maximal guest as vetted. We expand the set to its transitive
closure by crawling the “points-to” relation among JavaScript objects in the heap and
marking each visited object as vetted (with some exceptions noted below). Just prior
to completing, the maximal guest calls a custom API to conclude the first phase.

e Phase 2: After the maximal guest finishes executing, all the remaining JavaScript
objects in the heap are marked as unvetted. As the instrumented browser parses the
host page’s HTML and runs the host’s scripts, the newly created objects are also
marked as unvetted. Whenever the instrumented browser detects that the host page
is adding an unvetted object as a property of a vetted object, the browser marks the
corresponding edge in the heap graph as suspicious and records the subgraph reachable
via this suspicious edge. The dashed line in Figure 5.2 represents such a suspicious
edge.

One difficulty is knowing when to end the second phase. In principle, a web page could
continue to add suspicious edges indefinitely. In practice, however, most of the suspicious
edges we found were added by “library code” that is run while the page is loading so that
most scripts in the page can make use of the extensions provided by the library. To terminate
Phase 2, the proxy inserts a script tag after the page’s HTML that calls a custom API.
When computing the set of vetted objects as the transitive closure of the initial vetted
objects, the instrumented browser considers only edges in the “points-to” relation that can

I For ADsafe, the maximal guest we constructed instantiates one each of the following object
types: Function, Object, Array, RegExp, String, Error, EvalError, RangeError, ReferenceError,
SyntaxError, TypeError, and URIError. The only built-in objects defined by WebKit but absent from
this list are Number, Boolean, and Date. Date objects are disallowed in ADsafe code. Numeric and Boolean
literals (but not objects) can be constructed by ADsafe code, but these were not included in our maximal
guest due to an implementation error. Because of this and other factors, our result regarding the fraction of
exploitable sites is a lower bound.
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be traversed by guest scripts in the safe subset. For example, in ADsafe, guest scripts cannot
access properties with certain names, such as arguments, constructor, and eval. Addition-
ally, ADsafe guests cannot access any properties with names that begin with an underscore
character. These properties are ignored in computing the transitive closure, with one no-
table exception: __proto__. Although the guest script cannot access __proto__ explicitly, the

guest script can access the property implicitly because this property is used by the algorithm
described in Section 5.3 for resolving property names.

Implementation

We implemented our instrumented browser by modifying WebKit, the open-source browser
engine that powers Safari and Google Chrome. Our work builds off of our previous JavaScript
heap inspection implementation [25]. We implemented our HTTP proxy in Perl using the
HTTP: :Proxy library. The proxy modifies text/html HTTP responses in flight to the browser.
Because the browser can parse malformed HTML documents with a <script> before the main
<html> and after the main </html1>, we did not need to modify the response except to prepend
and to append the required script blocks.

Experiment

To evaluate whether web sites commonly use JavaScript features that breach the containment
of existing statically verified JavaScript subsets, we analyzed the Alexa US Top 100 web sites
using our breach detector for ADsafe. This set of web sites was chosen to represent the level
of complexity of JavaScript code found on popular web sites. Although this set might not
be representative of all web sites, malicious advertisements on these web sites impact a large
number of users. We give partial results here. The full results can be found in Appendix B.

Methodology

We retrieved the list of Alexa US Top 100 web sites and tested those web sites in May 2009.
Instead of using the home page of every site on the list, we made the following modifications:

e We removed all 9 web sites with adult content. (We were unsure whether our university
permits us to browse to those web pages in our workplace.)

e We removed blogspot.com because its home page redirected to blogger.com, which was
also on the list. The blogspot.com domain hosts a large number of blogs, but the Alexa
list did not indicate which blog was the most popular, and we were unsure how to
determine a “representative” blog.

e For some web sites, the home page is merely a “splash page.” For example, the
facebook.com home page is not representative of the sorts of pages on Facebook that
contain advertisements. Using our judgment, we replaced such splash pages with more
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Figure 5.3: Visual depictions of the results of the experiment.

representative pages from the site. For example, on facebook.com, we chose the first
page presented to the user after login.

We then used the algorithm described above to detect suspicious edges in the JavaScript
heap graph of the main frame created by visiting each of the 90 web pages we selected
for our experiment. We observed the number of suspicious edges for each page as well as
the source code of the exposed methods. We then manually analyzed the source code of the
exposed methods to determine whether the suspicious edges would have been exploitable had
the selected web pages hosted ADsafe-verified advertisements. Upon finding one exploitable
method for a given site, we stopped our manual analysis of the remaining exposed methods
for that site because an attacker needs only one vulnerability to construct an exploit.

One potentially fruitful area of future work is to automate this manual analysis step to
scale our analysis technique to a larger population of web sites (such as the entire web). In
fact, we used a crude static analysis framework based on regular expressions (e.g., grep for
return\s+this and eval) to help us find vulnerabilities faster. Even with these simple tools,
the manual analysis required only a number of hours.

Results
In our experiment, we observed the following:

e Of the web pages, 59% (53 of 90) contained at least one suspicious edge.

e We were able to construct proof-of-concept exploits for 37% (33 of 90) of the web pages.
Figure 5.3 summarizes our results. We observed a max of 72 suspicious edges and a mean
of 16.2 (n =90, o = 23.8).

Discussion

Our experiment lower bounds the number of analyzed sites that could be exploitable by a
malicious ADsafe-verified advertisement because we might not have found every suspicious
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String.prototype.right = function(n) { <div id="GUESTAD_">

if (n <= 0) { <script>
return ""; "use strict";

} else if (n > String(this).length) { ADSAFE.go("GUESTAD_", function (dom, 1ib) {
return this; var f = "Hello".right;

} else { £(100) .setTimeout("... attack code ...", 0);
var 1 = String(this).length; DR
return String(this).substring(l, 1 - n¥{script>

} </div>

(b) ADsafe-verified guest code implementing
(a) Relevant host code exploit

Figure 5.4: Exploit for people.com

edge or every exploit. The histogram in Figure 5.3 shows that the number of suspicious
edges is correlated with exploitability. Although not all functions are exploitable (and not
all suspicious edges lead to functions), many common JavaScript programming idioms (such
as returning this) are exploitable. Of the sites with 20 or more suspicious edges, all but one
violate containment. The one site that did not violate containment, tagged.com, did not
contain any unvetted functions.

Case Studies

We illustrate how a malicious guest can use functions supplied by the host page to compro-
mise the security of the sandbox by examining two case studies from popular web sites. In all
the cases we examined, when a guest could escalate its privileges using host-supplied func-
tions, the guest could run arbitrary script with the authority of the hosting page, completely
breaching containment.

People

We first examine people.com, a magazine. People augments the String prototype object
with a number of utility methods, including a method right that extracts the n right-
most characters of the string. As an optimization, the function returns the original string
(designated by this) if it contains fewer than n characters. Although apparently benign, this
optimization lets a guest breach containment.

When a JavaScript function is called as a method of an object (e.g., as in obj.£()), the
this keyword refers to that object (e.g., obj). However, if a function is called in the global
scope (e.g., as in £()), then the this keyword refers to the global object, commonly known
as the window object. By removing the right function from a primitive string, as shown in
Figure 5.4, a malicious guest can call the function in the global scope, binding this to the
global object. By supplying a sufficiently large value for n, the host’s function will return the
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global object to the attacker. Once the attacker has access to the global object, the attacker
can use any number of methods for running arbitrary script with the host’s authority.

Twitter

Next, we examine twitter.com, a social network. Twitter makes use of the Prototype
JavaScript library [10], which adds a number of useful functions to the default JavaScript
environment. The exploit we describe for Twitter is applicable to every web site that uses
the Prototype Library, including numerous prominent sites [6]. Moreover, we argue that the
particular function we exploit in the Prototype Library is not an isolated example because
the primary purpose of the Prototype Library is to augment the built-in prototype objects
with useful (but potentially exploitable) functions.

The Prototype Library adds a method to the string prototype that calls eval on the
contents of every <script> tag found in the string. Exploiting this function is trivial: a
malicious advertisement need only create a string containing a <script> tag and call its
evalScripts method (see Figure 5.5). This example illustrates that library designers do not
expect their functions to be called with untrusted arguments. This trust assumption is
currently valid, as evidenced by the lack of actual exploits against Twitter, but becomes
invalid when hosting ADsafe-verified advertisements.

To protect themselves from this attack vector, web sites could remove all potentially
exploitable functions, but this approach has two serious drawbacks. First, the publisher must
modify its page to the specifications of the advertising network. If an advertising network
imposes restrictions on how their publishers code their web sites, publishers are likely to sell
their advertising space to another advertising network rather than retrofit their web sites.
Second, JavaScript contains many subtly dangerous idioms. Even if a publisher can rid every
page of these idioms, the idioms are likely to return as developers modify the site. Instead
of forcing each publisher to modify their web pages, we suggest strengthening the sandbox
to prevent these prototype modifications from allowing a guest to breach containment.

5.5 Blancura

Current statically verified JavaScript subsets are not robust to prototype extensions. If a
web site extends a built-in prototype object with a new method, guest code can access that
method and, if that method is exploitable, breach the subset’s containment. We propose
further restricting guest code to prevent this kind of containment breach. Instead of using
a blacklist to ban known-dangerous properties, our system, Blancura, whitelists known-safe
properties. In our system, the guest cannot access exploitable methods defined by the host
because those functions are not on the whitelist.
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String.prototype.extractScripts = function(Xdfv id="GUESTAD_">

var matchAll = new RegExp( <script>
Prototype.ScriptFragment, ’img’); "use strict";
var matchOne = new RegExp( ADSAFE.go("GUESTAD_", function (dom, 1ib) {
Prototype.ScriptFragment, ’im’); var expl = ’<script language="javascript">’ +
return (this.match(matchAll) || [1). ... attack code ...<\/script>’;
map (function(scriptTag) { expl.evalScripts();
return (scriptTag.match(matchOne) || });
>, DI, </script>
IF </div>
}

String.prototype.evalScripts = function() {
return this.extractScripts() .map(
function(script) { return eval(script) 1});

}
(b) ADsafe-verified guest code implementing
(a) Relevant host code exploit
Figure 5.5: Exploit for twitter.com
Design

To improve isolation, we propose running the host and each guest in separate JavaScript
namespaces. By separating the namespaces used by different parties, we can let the host and
guest interact with the same objects (e.g., the string prototype object) without interfering
with one another. Essentially, our system whitelists access to property names within the
proper namespace and blocks access to all other property names. This approach is similar to
script accenting [33] and the “untrusted” HTML attribute from [51], both of which separate
the namespaces for each distinct principal. For example, we prohibit the guest advertisement
from containing the following code:

obj.foo = bar;
Instead, we require foo have a page-unique prefix:

obj .BLANCURA_GUEST1_foo = bar;

The Blancura verifier enforces this property statically by parsing the guest’s JavaScript and
requiring that all property names begin with the prefix. For dynamic property accesses (i.e.,
with the [] operator), Blancura enforces namespace separation dynamically using the same
mechanism ADsafe uses to blacklist property names.

To generate the page-unique prefix, we leverage the fact that ADsafe guests already
contain a page-unique identifier: the widget ID. ADsafe requires that guest JavaScript code
appears inside a <div> tag with a page-unique id attribute, which ADsafe uses to identify the
widget. We simply use this value, prefixed by BLANCURA_, as the guest’s page-unique names-
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pace. This technique lets us avoid using randomization to guarantee uniqueness, dodging
the thorny problem of verifying statically that a piece of code was “correctly randomized.”

Using separate namespaces protects hosts that add vulnerable methods to built-in pro-
totype objects. For example, if the host page adds a vulnerable right method to the String
prototype, a malicious guest would be unable to exploit the method because the guest is
unable to access the right property. In some sense, this design is analogous to doing an ac-
cess check on every property access where the property name prefix is the principal making
the access request. Ideally, we would modify the host to use a separate namespace (e.g.,
BLANCURA_HOST_), but advertising networks are unable to rewrite the publisher’s JavaScript.
In practice, however, we do not expect publishers to add properties to the built-in prototypes
with guest prefixes, an expectation which is validated by our experiment.

After placing the guest in its own namespace, the guest is unable to access any of the
built-in utility methods because those methods have not yet been whitelisted. However,
many of those functions are useful and safe to expose to guest script. To expose these
methods to the guest, the Blancura runtime adds the appropriate property name:

String.prototype.
BLANCURA_GUEST1_index0f =
String.prototype.index0f;

The guest code can then call this function as usual using its prefixed property name, incurring
negligible runtime and memory overhead. Instead of blacklisting dangerous built-in methods
such as concat, this approach lets the subset designer expose carefully vetted methods to the
guest individually instead of punting the issue to the developers who use the subset.

Adding prefixes to property names does not measurably affect runtime performance.
When the JavaScript compiler parsers a JavaScript program, it transforms property name
strings into symbolic values (typically a 32-bit integer), and the symbols generated with and
without the prefix are the same. Whitelisting existing properties of a built-in object does
incur a tiny memory overhead because more entries are added to the object’s symbol table,
but this memory overhead amounts to only a handful of bytes per property. Emulating DOM
interfaces that use getters and setters (such as innerHTML) incurs some run-time cost because
the runtime must install a custom getter or setter with the prefixed name. However, systems
like ADsafe often wrap the native DOM with a library free of getters and setters [42].

Implementation

We implemented Blancura by modifying the ADsafe verifier. Using a 43 line patch, we re-
placed the blacklist used by ADsafe’s static verifier with a whitelist. By making minimal
modifications to the ADsafe verifier, we have a high level of assurance that our implemen-
tation is at least as correct as ADsafe’s implementation, which has been vetted by experts
in a public review process. Additionally, Blancura is a strict language subset of ADsafe,
ensuring that any vulnerabilities in Blancura are also vulnerabilities in ADsafe. Our verifier
is available publicly at http://webblaze.cs.berkeley.edu/2010/blancura/.
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To demonstrate that Blancura is as expressive as ADsafe, we implemented a source-
to-source compiler that translates ADsafe widgets into Blancura widgets by prefixing each
property name with the appropriate namespace identifier. We implemented our compiler
by modifying the Blancura verifier to output its parsed representation of the widget. Our
compiler is idempotent: if the input program is already in the Blancura subset, the output
of the compiler will be identical to the input. The compiler can, therefore, also be used as a
Blancura verifier by checking whether the output is identical to the input.

Although we have based our implementation of Blancura on ADsafe, we can apply the
same approach to the other JavaScript subsets that use static verification, such as Dojo
Secure or Jacaranda. In addition, our approach of whitelisting property names is also appli-
cable to FBJS even though FBJS is based on a source-to-source compiler and not a static
verifier. In each case, using the Blancura approach improves the security of the system with
minimal cost.

Imperfect Containment

Despite improving the containment offered by static verifiers, a host page can still com-
promise its security and let a guest advertisement breach containment because JavaScript
programs can call some methods implicitly. For example, the toString and value0f methods
are often called without their names appearing explicitly in the text of the program. If
the host page overrides these methods with vulnerable functions, a malicious guest might
be able to breach containment. In our experiment, the only site that overrode these meth-
ods was Facebook, which replaced the toString method of functions with a custom, but
non-exploitable, method.

A host page can also compromise its security if it stores a property with a sensitive name
in a built-in prototype object because guests can observe all the property names using the
for(p in obj) language construct. Similarly, a guest can detect the presence of other guests
(and their widget identifiers) using this technique. We could close this information leak
by banning this language construct from Blancura, but we retain it to keep compatibility
with ADsafe and because, in our experiment, we did not observe any sites storing sensitive
property names in prototype objects.

5.6 Conclusions

Existing secure JavaScript subsets that use statically verified containment blacklist known-
dangerous properties. This design works well on the empty page where the set of functions
accessible from the built-in prototype objects is known to the subset designer. However,
when verified advertisements are incorporated into publisher web sites, the advertisement
can see methods added to the built-in prototypes by the publisher. If the publisher does not
carefully vet all such functions, a malicious advertisement can use these added capabilities
to breach the subset’s containment and compromise the publisher’s page.
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To determine whether this infelicity is a problem in practice, we analyzed the non-adult
web sites from the Alexa Top 100 most-visited web sites in the United States. We found that
over a third of these web sites contain functions that would be exploitable by an ADsafe-
verified advertisement displayed on their site. In fact, we found that once a web site adds a
non-trivial number of functions to the built-in prototypes, the site is likely to be exploitable.
From these observations, we conclude that JavaScript subsets that use statically verified
containment require improvements before they can be deployed widely.

We propose improving these systems by revising a design choice. Instead of blacklisting
known-dangerous properties, we suggest whitelisting known-safe properties by restricting the
guest advertisement to accessing property names with a unique prefix. This mechanism pre-
vents advertisements from accessing properties installed by the host page while maintaining
the performance and deployment advantages of static verification. With our proposal, the
web sites in our study do not need to be modified in order to host untrusted advertisements
securely.
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Chapter 6

Translation of JavaScript Towards
Verification

6.1 Introduction

JavaScript is the lingua franca of the web. Its highly dynamic nature contributes both
to the perception that it is easy to use (at least for small programs), as well as to the
difficulty of using it to build secure applications. Whereas traditionally the security threat
has been limited by executing JavaScript within the confines of a web browser’s sandbox, the
scope of JavaScript is now considerably broader, and recent trends indicate that it is likely
to broaden further still. For example, Metro® applications in the forthcoming Windows 8
operating system can be programmed in JavaScript, and the language can be used to perform
a wide range of system calls on the host operating system. Tools that can effectively analyze
JavaScript for attacks and vulnerabilities are thus becoming a pressing need.

Reasoning about JavaScript programs, however, poses several challenges. Specifying the
semantics of JavaScript is itself a significant research question with which several groups
are currently engaged [86, 59, 66]. Rather than address this again, we adopt Guha et al.’s
solution. Their approach, A\JS, gives a translation of a sizable fragment of JavaScript into a
Scheme-like dynamically typed lambda calculus. Based on AJS, we developed a tool JS2ML,
which translates JavaScript programs to ML. JS2ML, in effect, composes the A\JS translation
with a Scheme to ML translation, statically typing JavaScript values with a single type
representing all dynamic types. What remains then is to reason about the programs emitted
by JS2ML2.

Much of this chapter is under submission and also appears in a technical report [118].
lhttp://msdn.microsoft.com/en-us/windows/apps/
2While Guha et al. demonstrate that their semantics is faithful using an extensive test suite, they make
no claims that the AJS translation is fully abstract. One of the novel claims of A\JS is that their work is more
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Translating JavaScript

We are motivated by prior work that has shown the usefulness of a refined, dependently
typed language in verifying security properties for web-related programs [57].

Refinement types allow for the expression of predicates that are assumed to hold across
all elements of that type, while dependent types

In that work, the authors require that programmers write their programs in a refined,
dependently typed 3, functional language instead of JavaScript. They show that using this,
they can verify fined grained policies about the behavior of these programs in relation to
the web and web applications. While this work is promising, and clearly shows the value of
using type systems to verify security properties of web applications, we look at the problem
of automatically translating JavaScript programs to this type of language. Then, we can
start looking at the problem of verifying these programs without the developer having to
write and reason in a new, complex language. This has the advantage that programmers
can write their programs in a familiar, well-known language (JavaScript), and we can do the
heavy lifting to set up verification.

There are several distinct challenges in trying to statically detect problems in JavaScript
programs through translation. The semantics of JavaScript involves many features and subtle
interactions among the features. These include prototype hierarchies, scope objects, implicit
parameters, implicit conversions, etc. Following AJS, the JS2ML translation desugars these
features into standard ML constructs.

Figure 6.1 illustrates the JS2ML translation—we call programs in the image of the JS2ML
translation “MLjs programs”. The functions allocObject, select, and update are functions defined
in a library for MLjs programs—they serve to create heap-allocated objects and to read and
modify their fields. This library also defines a type dyn for dynamically typed values, with
constructors like Str, Int, and Fun to inject values into the dyn type.

The definition of the JavaScript function foo is translated to the A-term foo in ML,
with two arguments, this, corresponding to the implicit this parameter in JavaScript, and an
argument args, an object containing all the (variable number of) arguments that a JavaScript
function may receive. Just like in JavaScript itself, objects are dictionaries indexed by string-

practical for proofs than prior work, such as [90], but as a result, their semantics is built from an ad hoc
understanding of JavaScript rather than a formal translation of the specification. They then automatically
test their specification against the extensive Mozilla JavaScript test suite to verify that their semantics
matches real JavaScript. While there are no known bugs in the AJS semantics, it cannot be considered a
formal semantics because it is verified using a test suite. Thus, since our work is built on AJS, any analysis
based on our translation may miss some behaviors of the source program if A\JS turns out to be unfaithful
to true JavaScript semantics. This limitation of our work could be addressed by using a higher fidelity
translation, but we do not see the need for this given the practical power and accuracy AJS demonstrates,
and that, in fact, the latest version of AJS includes a mechanized proof of correctness [29].

3Dependent types are types that are expressed in relation to a particular value (or values) that an element
may hold. Type refinements are types that contain a predicate that are assumed to hold for any element
of the given type. For example, in the language F* (which we introduce in Section 6.2), a refinement type
might state x : int { x > 0 }, which expresses that x is always a positive integer. See [116] for more
information on these concepts, specifically in the context of F*.
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1 function foo(x) { this.g = x.f + 1; }
2 foo({£:0});
3 foo = 17;

1 let foo this args = let x = select args "0" in

2 update this "g" (plus (select x "£") (Int 1)) in
3 update global "foo" (Fun foo);

4 let args = let x = update (allocObject()) "£" (Int 0) in

5 update (allocObject()) "0" x in

6 apply (select global "foo") global args;

7 update global "foo" (Int 17)

Figure 6.1: A JavaScript program (top) and its MLjs version

typed keys, rather than containing statically known field names. In the body of foo, the x
argument corresponds to the value stored at the key "0" in the args object. At line 3, the
function foo is stored in the global object (an implicit object in JavaScript) at the key "foo".
At line 6 we see that a function call proceeds by reading a value out of the global object,
calling the apply library function (which checks that its first argument is a Fun v, for some v),
and passing two arguments—the global object, the receiver object for the call; and the args
object containing a single argument. Finally, at line 7, we update the global object storing
the integer 17 at the key "foo".

There are many complications in using this to prove properties about JavaScript. For
example, suppose that one wished to prove that the call to the addition function plus at line 2
always returned an integer. One must prove that all callers of foo pass in an object x as the
zeroth value in the args object and that x has a field called "f", which contains an integer
value. But, even discovering all call-sites of foo is hard—all (non-primitive) function calls
occur via lookups into an untyped higher order store (line 6), and this store is subject to
strong updates that can change the type of a field at any point (line 7). However, in this
work, we focus on the translation specifically. We refer the reader to our report for details
on the verification condition generator and how it uses our translation specifically [118].

Contributions

We provide a new method for translating dynamic programs into F* [116], a dependently
typed dialect of ML, so that they may then be used in a verifier to statically enforce explicit
policies. Our contributions are as follows.

—We develop Js2ML, a translation from JavaScript to ML, and type the resulting (MLjs)
programs against the JSPrims API for verification.

—We present JSPrims, a library of dynamic typing primitives in F*. This library includes the
definition of a type dyn, a new refinement of type dynamic [64].
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—We extend JSPrims to include a partial specification of common APIs used by JavaScript
programs, including a fragment of the Document Object Model (DOM). Our specification
includes properties of recursive data structures (like DOM elements) using inductive predi-
cates.

—We evaluate our work experimentally on a collection of JavaScript web-browser extensions
(on the order of 100 lines each). This evaluation uses our JSPrims library and translation
to generate well-typed MLjs programs. The use of this translation in a general-purpose
verification generator to statically enforce properties is a separate work, and we will provide
only a brief description of it here. As mentioned above, for the details on this work, please
see our report [118].

Limitations

The main limitation of our work relates to the fragment of JavaScript we currently support.
First, because our work is based on AJS, we face similar restrictions as that work. For
example, our translation is based on the ECMAScript 3 standard and we consider closed,
eval-free JavaScript programs, both like AJS. As a further limitation, we also do not currently
translate JavaScript exceptions. While this is not a fundamental limitation, it was a choice
based on the amount of engineering effort needed in matching the JavaScript semantics
of exceptions to the F* model and we did not run into many uses of exceptions in our
experiments; we thus leave this for future work. Additionally, while the prototype chain is
implicitly present in our translation, it is not explicitly dealt with in the translation or our
JSPrims library, which leaves a larger challenge for verification techniques.

Of note, there are many constructs in JavaScript which may appear to be missing from
MLjs, but, in fact, are present thanks to the desugaring of A\JS. For example, there is no
explicit with statement equivalent in AJS because it is desugared to a simplified form without
an explicit syntax. We highly encourage readers interested in the desugaring of JavaScript
to read [60]; in this work, we try to focus on our new contributions, particularly around the
typing of JavaScript.

6.2 A brief review of F*

F* is a variant of ML with a similar syntax and dynamic semantics but with a more expressive
type system. It enables general-purpose programming with recursion and effects; it has
libraries for concurrency, networking, cryptography, and interoperability with other .NET
languages. In this chapter, aside from the types of ML, we limit ourselves to a few main
F*-specific typing constructs. Additionally, in this paper, we limit ourselves to a basic
description of what the type system of F* provides. For a more thorough description of the
language and its design and implementation, please see [115, 116].

The type system of F* is partitioned into several subsystems using a discipline of kinds.
We use two base kinds in this chapter. The kind « is the kind of types given to computations.
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In contrast, the kind F is the kind of types that are purely specificational. A sub-kinding
relation places the kinds in the order » < E.

Ghost refinement types of the form x:t{¢} represent values v:t for which the formula ¢[v/x]
is derivable from the hypothesis in the current typing context. The formula ¢ is itself a type
of kind F—it is purely specificational and has no runtime representation. Thus, x:t{¢} is a
subtype of t. Dependent function arrows x:t —t’ represent functions whose domain is named
x of type t and whose co-domain is of type t’, where t’ may depend on x. For non-dependent
function types, we simply write t —t’. We write (x:t * ') for a dependent pair, where x names
the first component and is bound in t’. We also use function arrows whose domain are types ’a
of kind k and whose co-domain are types t, written 'a::k — t, i.e., these are types polymorphic
in types ’a of kind k.

Aside from the base kinds (x and FE), we use product kinds ’a:k = k' and x:t = k for type
constructors or functions. For example, the list type constructor has kind x= «, while the
predicate Neq (for integer inequality) has kind int = int = E. We also write functions from
types to types as fun (‘a:k) = t, and from terms to types as fun (x:t) = t’. For example,
fun (x:iint) = Neq x 0 is a predicate asserting that its integer argument x is non-zero. As a
general rule, the kind of a type is x, if not explicitly stated otherwise.

F* is also parametric in the logic used to describe program properties in refinement
formulas ¢. These formulas ¢ are themselves types (of kind F, and so purely specificational),
but these types can be interpreted in a logic of one’s choosing. In this chapter, we use a
higher-order logic, extended with a theory of equality over terms and types, a theory of linear
integer arithmetic, datatypes, and a select/update theory of functional arrays [94] (useful
for modeling heaps). Except for the higher-order constructs (which we handle specially), all
decision problems for the refinement logic are handled by Z3, the SMT solver integrated with
F*’s typechecker. The binary predicates EqVal and EqTyp below are provided by F*’s standard
prelude and represent syntactic equality on values and types respectively. For brevity, we
write v=v’ and t=t’ instead of EqVal v v’ and EqTyp t t’, respectively.
type EqVal ("aix) i ’a=’a= F
type EqTyp : E= E=FE
logic tfun type TypeOf (Ca:x) ::’a = E

Every type and data constructor in an F* program is, by default, treated as an injective
function in the logic (i.e., according to the theory of datatypes). To override this default
behavior, we tag certain declarations with various qualifiers. For example, the declaration
of TypeOf above is tagged logic tfun, indicating that it is to be interpreted as a non-injective
type function from values to E-types in the refinement logic.

Values can also be provided with interpretations in the logic. For example, to model a
map type as a functional array in Z3, we write the following declaration in F*.
logic array(sel, upd, emp, InDom) type heap
logic val sel : heap —ref’a —’a
logic val upd : heap —ref ’a —’a — heap
logic val emp : heap
logic tfun InDom : heap = ref ’a = E
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This provides an abstract type called heap, with four interpreted functions in the logic:
sel selects the value from the heap at the specified reference; upd updates the heap at the
specified reference location; emp is the empty heap; and InDom is an interpreted predicate
to test whether a reference is allocated in the heap. The logic val tag records that these
functions are interpreted in the logic only—they may be used only within specifications.

The type system and metatheory of F* has been formalized in Coq, showing substitutivity
and subject reduction, while a separate progress proof has been done manually. These type
soundness results (modulo the soundness of the refinement logic) imply the absence of failing
assertions in any run of a well-typed F* program.

The importance of F* to this work is in the ability to refine the dynamic typing informa-
tion from our translation. Without the type system of F* we would be limited in how we
can translate JavaScript. Take, for example, a JavaScript variable declaration var x = 42; A
straightforward ML translation of this would lead to a general, dynamic type for this variable
because it can take on any value later in the program and be passed around to functions
that take multiple values. For example, given a type dyn that is a sort of union type of all
JavaScript types, an ML translation of the JavaScript variable might be let (x : dyn) = 42.

However, with type refinement, we might be able to express further conditions on this.
In F* we can express a refinement of the above expression that x should be an integer in
the expression let (x : dyn{EqTyp (TypeOf x) int}), where EqTyp and TypeOf describe type equality
and the type of the given variable, respectively. This allows later verification work to create
policies and verify them based on the typing information provided by the translation.

The MLjs language. MLjs is a small subset of F*—its syntax is shown below. Values
v include variables, n-ary lambdas, and n-ary data constructor applications. Formally, we
encode other common constants (strings, integers, unit, etc.) as nullary data constructors,
although our examples use the usual constants. Expressions include values, function appli-
cation (as in F*, we require the arguments to be values), let bindings, and pattern matching.

Syntax of MLjs

v ou= x| Aze|C0

e == v|vv|let z =e; in ey | match v with C' T — e; else ey
L ]

No JavaScript-specific constructs appear in MLjs directly. Instead, we provide an F*
library, JSPrims, which is used by every MLjs program produced by the JS2ML translation.
For example, the data constructors for type dyn are also defined by JSPrims. Additionally, as
shown in Figure 6.1, functions to manipulate state are provided by the JSPrims library.

6.3 A library for dynamic typing in F*

As described above, the basic language of our translation, MLjs, is relatively simple in
and of itself. We leave much of the complexity in an associated F* library, JSPrims, which
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type undef :: %

logic type EqTyp :: E= E= FE

logic type TypeOf (Ca:ix) :’a = F

type dyn =
| Bool : bool — d:dyn{EqTyp (TypeOf d) bool}
| Int : int — d:dyn{EqTyp (TypeOf d) int}
| Str : string — d:dyn{EqTyp (TypeOf d) string}
| Obj : loc —d:dyn{EqTyp (TypeOf d) object}
| Undef : d:dyn{EqTyp (TypeOf d) undef}
| Fun : (dyn —dyn —dyn) —dyn

Figure 6.2: A refinement of type dynamic

defines various constructs for expressing properties and later verifying MLjs programs. The
translation uses this library to fully express the original JavaScript programs in MLjs.

A refined type dynamic

The first step in creating JSPrims is creating a refinement in F* of the basic dynamic JavaScript
type, dyn. Figure 6.2 shows the definition of our type dyn, based on the standard algebraic
type dynamic, but with refinement types on each case to recover precision. For example, we
have the constructor Int, which allows an integer i to be injected into the dyn type. The type
of (Int i) is d:dyn{EqTyp (TypeOf d) int}. (The type of Str is similar.) The refinement formula uses
the binary predicate EqTyp, interpreted in the refinement logic as an equivalence relation on
types and the type function TypeOf to reference the type of a given variable. Additionally,
E is a ghost term in a specification when the proof for the term is irrelevant or available.
We refer readers to [118] for an explanation of these terms as they require a more in-depth
review of F*.

We use the Obj constructor to promote heap-resident MLjs objects to the dyn type—
the type loc, isomorphic to the natural numbers, is the type of heap locations. The Undef
constructor is for the undefined value in MLjs.

Fun is particularly notable. The JS2ML translation translates every JavaScript function to
a 2-ary, curried function. The first argument is for the implicit this parameter (made explicit
in the translation), and the second parameter is for all the other arguments represented as
a dictionary. So, to a first approximation, the type of Fun is (dyn —dyn —dyn) —dyn. In
practice, verifiers may modify this type for more precise information. For example, the
function’s effects on the heap may be worth explicitly modeling, but we leave this to the
work of verification. In addition, JSPrims also provides a function application primitive, apply,
that unwraps and calls a given Fun.

JSPrims also provides the mechanisms for updating and accessing objects on the heap.
The particular model of the heap is left up to later verification work; our default translation
simply treats objects as simple mutable arrays. In particular, JSPrims provides allocObject,
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val abstractEquality : dyn — dyn — dyn
let abstractEquality (ol : dyn) (02 : dyn) = Bool(true)

val refEquality : dyn —dyn —dyn
let refEquality (ol : dyn) (02 : dyn) = Bool(true)

val addition : pl:dyn — p2:dyn — p3:dyn{((IsNumber p1) && (IsNumber p2)) = IsNumber p3}

var global : dyn

Figure 6.3: Some basic JavaScript primitives in JSPrims

update, and select functions. These provide the functionality for, respectively, allocating a
new object, mutating a property in place in an object, and selecting a property from an
object.

Our full library includes cases for the other JavaScript primitive types as well. Note,
from here on, unless we think they specifically aid understanding, we omit kind annotations
on type variables for concision and clarity. We also use the equality operator and write t = t’
instead of EqTyp t t'.

One of the most useful portions of the AJS translation is how implicit JavaScript features
are desugared and made explicit. For example, the tostring method is a special JavaScript
method that is often called to coerce non-string primitives into strings where strings are
semantically required. One case where this is done is in code such as x[y]. Here, it is possible
that y might be an object or a function, or any other non-string JavaScript value. JavaScript
implicitly calls y.toString dynamically to ensure that the index into x is a string. Our
translation, following AJS, makes such coercions explicit. Similar ideas apply to functions
such as value0f as well. Of note, we implement these implicit coercions as regular JavaScript
calls, rather than special cases in the MLjs syntax. Thus, the actual implementations and
specifications of these functions is in the JSPrims library.

Modeling JavaScript and the DOM

An important part of JavaScript are many of the objects and functions it provides as a part of
the language. In particular, in web applications, JavaScript provides the Document Object
Model (DOM) as a programmatic way of accessing the structure of the current page. It is
access to this model, the DOM, that JavaScript security policies often wish to restrict [41, 31].
Thus, it is vital that, in our translation, we provide a model of the DOM that is amenable
to verification, such as for access control to the DOM or other types of policies.

In the JSPrims library, we provide such a model, both for the DOM and for other core
JavaScript functions. Besides being important for verification, it is also vital to the creation
of virtually any well-type JavaScript program in MLjs. For example, in Figure 6.3, we see
a set of some of the basic primitives in JavaScript that the translation inserts and makes
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val document : dyn{IsObject(document)}

val document_body : dyn{lsObject(document_body)}
val history : dyn{lIsObject(history)}

val location : dyn{lsObject(location)}

val getElementByld : p:dyn — q:dyn —dyn

Figure 6.4: Some DOM primitives in JSPrims

explicit. Lines 1 and 4 show the definition of abstractEquality and refEquality, respectively*. While
technically in JavaScript these operators return a dynamic type, we know that, in fact they
return a dynamic type that will always carry a boolean value. Thus, this refinement on these
values may help verification in understanding JavaScript.

Similarly, on line 7, we see the type definition of addition®. This type is particularly
important. As with other functions and operators in the translation, it takes arguments
with type dyn, and the refinement explicitly points out that these types must have been
constructed with one of the number constructors. This, of course, will only type check in
F* if, in fact, this is true. If this is proved by the type checker, then a verifier can use this
proof further down the line, for example, to show that a variable that was an argument to
this function cannot be a string in another context.

Also notable is line 9 where the JavaScript global object is defined. This is a special
object in JavaScript that serves as a namespace for all global variables in the program. The
global object is accessed (often implicitly) by JavaScript programs to reach many important
parts of the program, such as the document object in the DOM, which we will discuss shortly.

In Figure 6.4, we see several examples of DOM primitives that are defined in JSPrims. The
first four lines define the types for several basic parts of the document: the document itself,
the body of the document, the history object, and the location object. These are simple
objects but it allows a verification tool to write explicit policies about how these objects are
accessed, rather than writing policies abstractly about the DOM.

Take line 6. This defines a basic type for the document.getElementById function for ac-
cessing elements in the DOM. It is easy to see why a verifier might want to restrict ac-
cess to this function as it, in turn, effectively gives full access to the DOM of the page.
While JSPrims provides this basic object, the translation allows verifiers built on top of
it to create a more precise refined type. For example, if you wanted to create an ac-
cess control policy of what can call document.getElementById, you might refine this type as:
val getElementByld : p:dyn — q:dyn{Perm_GetElementByld p q} — dyn. Of course, how the
Perm_GetElementByld refinement works is for the verifier’s model to specify.

4These correspond to the === and == operators in JavaScript respectively

5While this corresponds to JavaScript’s + operator, an observant reader might note that, in fact, in
JavaScript, + can take many different types as arguments. In the translation, we treat all of these as
different functions with an overloaded symbol. Thus, here, we are only looking at the numerical version of
addition.
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type exp =
| EValue of pos * value
| EOpl of pos * prefixOp * exp
| EOp2 of pos * infixOp * exp * exp
| EDot of pos * exp * id
| EBracket of pos * exp * exp
| ECall of pos * exp * exp option * exp list
| ECalllnvariant of pos * id * id
| EAssign of pos x id * exp
| EDotAssign of pos * exp * id * exp
| EBracketAssign of pos * exp * exp * exp
| ENew of pos x exp * exp list
| EObjLiteral of pos * (id * exp) list
| EList of pos * exp * exp
| EIf of pos * exp * exp * exp
| EVar of pos x id * exp * exp

and stmt =
| SSeq of pos * stmt * stmt
| SIf of pos * exp * stmt * stmt
| SWhile of pos * exp * stmt
| SReturn of pos * exp
| SBreak of pos
| SEmpty of pos
| SExp of exp
| SForInStmt of pos * id * exp * stmt
| SVar of pos * id * exp * stmt
| SVarDecl of pos * id
| SThrow of pos x exp
| SComment of string

type prog =
| PStmt of pos * stmt
Figure 6.5: A portion of the JS2ML translation. Note that the pos type represents a program
position in the original JavaScript program. Also, for brevity, we elide the definition of value
which defines the grammar for JavaScript primitives.

JSPrims provides the basic functionality for the translation to create well-typed MLjs
programs. It provides a basic set of types and objects for the core of MLjs to type well-
formed JavaScript programs. It leaves great latitude for JavaScript verifiers to build further
verification models on top of it.
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6.4 Translating JavaScript to ML

The AJS approach to specifying the semantics of JavaScript is attractive. By desugaring
JavaScript’s non-standard constructs into the familiar constructs of a Scheme-like program-
ming language, AJS makes it possible to apply many kinds of standard program analyses to
JavaScript programs. However, after working with the AJS tool, we decided that we were
not able to emit the well-typed ML code that we needed with \JS.

We experienced several difficulties with AJS. One example is its relatively brittle front-
end. Parsing JavaScript is not easy (mainly because of its unusual semi-colon and off-side
rule), and AJS failed to successfully parse many of the programs we were interested in.
Additionally, we ran into issues with the translation itself. Given that it was for a simple
desugaring, we ran into problems when, for example, we wanted to add in additionally hints
regarding type information Thus we decided to implement a tool resembling AJS, JS2ML,
from scratch.

Following the main idea of AJS, we implemented JS2ML in a mixture of C# and F#, uti-
lizing a front-end for parsing and desugaring JavaScript provided as part of Gatekeeper [56],
a JavaScript analysis framework. Gatekeeper provides many facilities for JavaScript anal-
ysis which we have yet to exploit, e.g., it implements a Datalog-based pointer analysis for
JavaScript, which we anticipate could be used to generate the hints to our query compiler
described previously.

In Figure 6.5, we see the type constructors of the target grammar of MLjs. We have
tried to make the labels fairly self explanatory. It consists of expressions and statements,
and a program is simply a statement. In the grammar, pos is the position in the original
JavaScript program that the current expression or statement was derived from, so that we
can connect and verification results back to the original program. We elide the definition of
JavaScript primitives (integers, strings, regular expressions, etc.) for simplification.

Some of the grammar does require clarification. Building on AJS, many common features
of JavaScript are desugared into other constructs. For example, with is distilled down to
an explicit series of static lookups when referencing variable labels. JavaScript continue
and break statements are desugared to a common break statement that jumps to a statically
defined label. Regular expression matching is desugared to a function call rather than a
separate syntactic form. There are several other constructs similarly desugared, for with we
refer you to [60].

Functions, in MLjs, are simply first-class values that are passed around as bindings
to variables. Thus, we elide them in Figure 6.5 because they appear in the definition of
JavaScript primitives.

Another common point of confusion are the two forms of if statements. The stan-
dard JavaScript if-then-else form is represented by the Sif statement structure. However,
JavaScript also allows if expressions in the form of the ternary operator, ? :. The MLjs
expression Elf represents this construct.

In MLjs, the SVarDecl and SVar statements are for variable declaration and initial variable
assignment, respectively. We desugar variable declarations to these two separate statements
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because, in fact, they occur at different times. In JavaScript, a variable declaration, even
if it appears in the middle of a function, occurs at the beginning of the function. However,
any initialization of its value does not actually occur until its appearance in the actual code.
We separate the declaration and initialization to make this distinction explicit.

The MLjs expression ECalllnvariant is used for manually inserted loop invariants added by
the developer or verifier. We discuss the use of this in an upcoming section.

One of the prime benefits of the translation is how it simplifies the structure of programs,
making them easier to reason about. For example, note that there are only two types of
loops in MLjs, SWhile and SForInStmt. All loops are collapsed into these constructs. It was
shown in the prior AJS work that these types of simplifications can make formal reasoning
about programs much easier.

Aside from the front-end, and the hints inserted by JS2ML, we describe the principal
differences between J$2ML and AJS below.

—The output of JS2ML is typed whereas the output of A\JS is untyped. JS2ML inserts the
constructors of dyn such as Int and Fun throughout the translation. JS2ML translates select,
update, and function application in JavaScript programs to calls of the corresponding JSPrims
APIs. In contrast, AJS relies on primitive dynamically-typed operations on references and
functions in Scheme.

—JS2ML translates locals to allocated objects on the heap whereas AJS locals are not objects.
Our object-based locals makes our heap model more uniform.

—JS2ML has a simple annotation language for stating loop invariants. However, the support
for annotations is very primitive at present—we plan to improve on this in the future.

—Guha et al. check the accuracy of their tool against a large corpus of benchmarks, showing
the output of programs under the AJS semantics was identical to the original JavaScript.
We have not yet tested JS2ML at a similar scale, although we plan to in the future.

Towards Verification The purpose of the translation is to be used by a verifier to prove
properties of JavaScript programs. We do not claim work on verification as part of the
results of this work. For full details on how verification can be done, we refer you to [118].
Here we describe some of the features of our translation that relate to verification.

The verification in [118] relies on a general-purpose verification generator designed for ML
programs. The translation generates JS2ML programs that use the JSPrims library to verify
against. The translation leads to basic, well-typed programs, with several other features for
the verifier:

—For part of the proofs by the verifier, it requires hand coded loop invariants. Thus, the
translation adds an ability for a developer to, in the comments, provide a loop invariant.
This allows the developer to explicitly set the loop invariants which the verifier might not
otherwise be able to automatically extract. This can be seen in the type constructor in
Figure 6.5 line 8.

—One of the real keys to the verification process is the set of assertions set in the JSPrims
library. The library provides the basic set of functions that define the JavaScript libraries,
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the DOM, and other basic functions of JavaScript. This is what the translated programs
are type checked against. This is also where the set of assertions can be set that provide
the properties the program will be verified against. That is, the JSPrims library provides
assertions about properties of the program which the verifier then attempts to prove via
the type system. By default, this is simple program correctness conditions. However, more
complicated correctness or security properties can be defined here.

The J82ML translation is, at its most basic level, a well-typed version of JavaScript in ML.
However, the addition of this type information as well as the simplification of the structure of
the JavaScript language help the verifier produce proof obligations. The actual verification
of these programs is not part of this work.

6.5 Examples

This section presents several examples of our translation. All the major web browsers provide
support for JavaScript extensions, which can provide a range of features for an enhanced
browsing experience. Browser extensions have been the subject of some recent study, both
because of their popularity, and because of the security and reliability concerns they raise [57,
21, 23]. Extensions are executed on every page a user visits, and runtime errors caused by
extensions can compromise the integrity of the entire browser platform. Thus, a methodology
to verify security policies on extensions is of considerable practical value, so we chose these
as a first step in our evaluation of our translator.

For our evaluation, we looked dozens of microbenchmarks, but more importantly, 11
real Chrome extensions [23]. The translation translates each of these programs in a matter
of a few seconds, so we do not discuss the performance here. In this section, we review
two browser extensions for the Google Chrome web browser, and a look at parts of our
translation®. These extensions are based on extensions that were studied in prior work [57].

Example 1: HoverMagnifier

Our first extension is HoverMagnifier, an accessibility extension: it magnifies the text under
the cursor, presumably to assist a visually impaired user. The core interface of HoverMagni-
fier with a web page is implemented in 27 lines of JavaScript. A key part of its code is shown
below — it involves the manipulation of a collection of DOM elements. At line 1 it calls
the DOM function getElementsByTagName to get all the <body> elements in a web page. Then,
line 3 sets an event handler, magnify, to be called whenever the user’s mouse moves—we elide
the definition of magnify.

6Also note that we have “cleaned up” these translations to make them more human readable. For
example, in let bindings, the translation would normally generate randomized variable names, but we have
modified these to create more readable names.
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A fragment of HoverMagnifier

I
var body = document.getElementsByTagName (’body’) [0];
function magnify(evt) { ... }

body.onmousemove = function (evt) { magnify(evt); };
| |

We have to provide specifications for all the APIs used by the program, which we do
in JSPrims. For our extensions, this API is principally the DOM. We have already seen a
small fragment of our DOM specification. We also need basic functions of JavaScript that
are normally implicit, such as property access and function application, explicit.

We see the translation of the body.onmousemove assignment in the display below. There are
several important points here. For example, on line 3, we see an explicit object allocation.
This creates a heap location for a new JavaScript object, which is normally an implicit
process. This also allows for refinements that specify that a variable is assigned an object
exclusively.

Additionally, on line 5, we see the call to magnify inside the function definition. This
requires an selection from the global object to get the magnify function, but also a special
call to apply to finally make the call. This is needed because function objects are also of type
dyn, and thus need to be “unwrapped” to call the function.

This particular example also shows an example of where the translation might help a
verifier. Imagine a policy that restricts access to event callbacks, such as onmousemove. The
translation provides the type information on the global object such that the verifier can
statically show the global object to be in the first select statement. Then the verifier is
obligated to to prove or disprove that the properties accessed via the select and update lead
to onmousemove. How a verifier might do this is shown in [118].

Translation of basic magnify event in HoverMagnifier

I
let _ = update (select (Obj global) "body") "onmousemove"
(Fun ((fun (this:dyn) — (fun (args:dyn) —
locals = allocObject () in
let _ = update locals"evt" (select args "0") in
let _ = apply (select (Obj global) "magnify")(Obj global)
(let args = allocObject() in
let _ = update args "0" (select local "evt") in args) in
Undef)))) in

Example 2: Typograf

Our second example is Typograf, an extension that formats text a user enters in a web form.
We show a small (simplified) fragment of its code below.
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I
function captureText(elt, callback) {
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Message passing with callbacks in Typograf

if (elt.tagName === "INPUT’){ callback({ text: elt.value }); }
}
function listener(request, callback) {
if (request.command === ’captureText’) {
captureText(document.activeElement, callback);

H

chromeExtensionOnRequest.addListener(listener);
| |

Typograf, like most Chrome extensions, is split into two parts, content scripts which have
direct access to a web page, and extension cores which access other resources. The two parts
communicate through message passing. When Typograf’s content script receives a request
from the extension core to capture text, it calls captureText, which calls the callback function
in the request (line 2). At line 8, Typograf registers listener as an event handler with the
Chrome extension framework, by calling the function addListener. Below is the translation for
this line.

Translation of Typograf Chrome API call

I
let _ = apply (select (select (Obj global) "chromeExtensionOnRequest")
"addListener")
(select (Obj global) "chromeExtensionOnRequest")

listener in ...
L ]

The translation here is relatively straightforward, with a series of select calls to access the
chromeFEztensionOnRequest object. This shows how the simplification can help a verifier.
While the simple type of the chromeExtensionOnRequest object (which is defined in JSPrims is
of dyn, a policy may want to restrict access to this. Thus, a verifier might refine its type
to something like chromeExtensiononRequest:dyn{RequiresRequestPerm(chromeExtensionRequest)}, where
RequiresRequestPerm is a predicate that defines a permission that the extension must be granted
for it to resolve to true. Then, if select is refined to require objects of type dyn but with valid
permissions, the verifier will have to prove that the caller has permission to access this
function before proceeding.

Another part of the Typograf translation is shown below. It contains many similar
features to HoverMagnify. Like HoverMagnify, it emphasizes the explicit description of
the heap in the translation. While relatively straightforward for the translation, this has
important implications for verifiers as this is important for their modeling.
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Partial translation of Typograf

I
let eq = refEqBool (select (select locals "request") "command") (Str "captureText") in

if eq then
let _ = apply (select (Obj global) "captureText") (Obj global)
(let args = allocObject () in
let _ = update args "0" (select (select (Obj global) "document") "activeElement") in
let _ = update args "1" (select locals "callback") in
args) in
Undef
else ...

6.6 Using the Translation for Verifying Correctness
and Security

Ultimately, the goal of this translation is to provide a mechanism on which to built verifiers
to check security policies on JavaScript programs. Previous work has shown the value of
type checking for verifying security policies of web applications (and, in particular, browser
extensions) [57]. In this section, we briefly describe how our translation relates to such work,
and what the results of tools built on our tool have been.

Our translation takes JavaScript programs and outputs a well-typed sub-language of F*,
MLjs. We provide a library, JSPrims, that describes the DOM as well as a great deal of the
standard functionality of standard JavaScript, so that programs will be well-typed, but also
as a starting block for doing complex verification of JavaScript programs.

Our translation puts in place the basic tools for building a verifier of security properties
in JavaScript by generating well-typed MLjs and creating a model of the DOM whose type
system can be used to verify properties. For example, we have described how one might
create an access control policy using the type system to prevent a program from accessing
parts of the Chrome extension API. Such a verifier could by used to check properties of
JavaScript programs. This would provide guarantees about the behavior of the JavaScript
itself (assuming soundness and correctness of our translation), so the original JavaScript
can be executed and assumed to have the desired properties. While, in fact, MLjs is a fully
executable language on top of the .NET framework, we do not particularly encourage its
use as an independent executable language or view it with that goal in mind; our hope is to
provide proofs about the original JavaScript which can then be executed as-is.

In fact, in [118], the authors build a verifier on top of our translation. This chapter
shows that JavaScript programs can be verified using a general-purpose verification tool,
built on top of our translation. There are several challenges that the paper addresses, such
as how to model the heap using our translation, and some of the difficulties in modeling
stateful expressions, which the authors use the Hoare state monad to address. They obtain
higher-order verification conditions for JavaScript programs that can be discharged by an
off-the-shelf automated theorem prover, specifically Z3 [47]. The authors use and extend
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jsprims to enforce specific properties. This provides a fully mechanized proof of soundness, by
virtue of the soundness of F*. In their experiments, they apply the tool chain to the browser
extensions shown above to show the absence of runtime errors.

While we only deal with the actual translation of JavaScript in this work, [118] shows a
very important use of our translation in verifying JavaScript. We believe that translation
can be used in the future to verify more complex security properties of JavaScript as well.
While at first glance, the dynamic nature of JavaScript appears to make it not amendable
to traditional verification work, we believe that translating JavaScript will allow us to apply
more and more well known techniques from verification to ensure security properties, thus
getting the dynamic benefits of JavaScript while maintaining many of benefits of a more
statically typed language.

6.7 Related Work

One of the inspirations for this work is work by Guha, et al. on verifying security policies
of web browser extensions [57]. In this work, the authors build a system for writing browser
extensions in Fine (the predecessor to F*) and using the type system to statically verify
the security properties. While their approach is very successful, instead of requiring authors
to write extensions in a functional style with complex, unfamiliar types, we approach the
problem by taking off-the-shelf extensions written in JavaScript and seeing if we can translate
programs to a more complex type system automatically.

There is a long tradition of aiming to equip dynamic languages with a notion of static
typing, starting perhaps with [64]. Following that line of work, [65] defined a translation
from Scheme to ML by encoding Scheme terms using the algebraic ML type dynamic. Our
work is related to this line in two regards. First, our JS2ML translation makes use of a similar
Scheme to ML translation (combined with AJS, which we have already discussed). Second,
Henglein and Rehof were also able to statically discover certain kinds of runtime errors in
Scheme programs via their translation to ML. Our methodology also aims to statically detect
errors in dynamically typed programs via a translation into a statically typed language. Of
course, because of the richness of our target language, we are able to verify programs in a
much more precise (and only semi-automated) manner. Besides, we need not stop at simply
proving runtime safety—our methodology enables proofs of functional correctness.

There are many systems for inferring or checking types for dynamic languages—too many
that covering all of them thoroughly is impossible. We focus primarily on the prior works
that rely on a mechanism similar to ours, i.e., approaches based on dependent typing. Dmi-
nor [27] provides semantic subtyping for a first-order dynamically typed language. [122]
provide refinement types for a pure subset of Scheme. System D [36] is a refinement type
system for a pure higher-order language with dictionary-based objects. None of these sys-
tems handle both higher-order functions and mutable state. Our translation explicitly has
these features in mind for building verifiers for JavaScript. Additionally, we show how to
embed a dynamically typed programming language within a general-purpose dependently
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typed programming language. This has several benefits. In contrast to the prior work, each
of which required a tricky, custom soundness proof (and in the case of System D, even a new
proof technique), our approach conveniently rides on the mechanized soundness result for
F*. Furthermore, implementing a new type system or program verifier is a lot of work. We
simply reuse the implementation of F*, with little or no modification. This has the benefit
that verifiers use our translation, they can leverage tools that already exist for F* for free.

In other work, [54] show how to write specifications and reason about the DOM using
context logic. Our specification of the DOM, in contrast, uses classical logic, and is not
nearly as amenable to modular reasoning about the DOM, which has many complex aliasing
patterns layered on top of a basic n-ary tree data structure. Understanding how to better
structure our specifications of the DOM, perhaps based on the insights in [55], is another
line of future work.

Many tools for automated analyses of various JavaScript subsets have also been con-
structed. Notable among these are two control-flow analyses. We have already mentioned
Gatekeeper, a pointer analysis for JavaScript—our JS2ML implementation shares infrastruc-
ture with this tool. The CFA2 analysis [127] has been implemented in the Doctor JS tool
to recover information about the call structure of a JavaScript program. Our method of
reasoning about JavaScript programs by extracting heap models in Z3 can also be seen as a
very precise control flow analysis. However, as we have already discussed, there is ample op-
portunity for our tool to be improved by consuming the results of a source-level control-flow
analysis as hints to our solver.

6.8 Conclusions

JavaScript has a dubious reputation in the programming language community. It is extremely
popular, but is also considered to have a semantics so unwieldy that sound, automated
analysis is considered an extremely hard problem. Previous work has begun to question
this, however, by rewriting JavaScript to make the semantics more explicit.

In this work, we expand on this idea by translating JavaScript into a statically, refined,
and dependently typed language, MLjs, which is a subset of F*. We show how JavaScript can
be translated into M Ljs in a well-typed way. As part of this process, we build a library, JSPrims
to model standard portions of JavaScript as well as the DOM. Furthermore, we suggest how
our translation might be used to verify security properties of JavaScript programs. In fact,
our tool has already been used to build a more complex verification tool on top of our
translation.

Type checking for security policies of web applications has been shown to be very promis-
ing. In this work, we have shown a vital first step in building verifiers for this purpose. Our
tool serves as the basis for verification tools by providing a method of generating dependent,
refined, well-typed JavaScript alongside a model of JavaScript and the DOM.
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Note For the latest information on this project, including the code associated with this
work, please visit: http://research.microsoft.com/en-us/projects/fstar/. At the
time of the publication of this thesis, the work associated with this chapter can primarily be
found in the js2fs and examples/monadic/js directories in the F* 0.6-alpha download.
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for this work to appear in this thesis.
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Chapter 7

Conclusion

The web has become increasingly sophisticated, and with it, so have web applications. These
applications use untrusted data in many new ways and understanding the policies that
developers use to secure untrusted data is vitally important. We must to understand the
tools available to developers and to constantly strive towards new tools that meet their needs.
In this thesis, we showed several examples of how to achieve these goals.

First, in Chapter 3, we measured the current state of tools in web frameworks in ex-
pressing implicit security policies on untrusted data. We built a model of web browsers to
show the complexity that any web application must deal with in using untrusted data in
its content. We compared the tools that web frameworks grant and the policies they can
enforce to the behavior of real applications and showed that there is a substantial gap.

Next, in Chapter 4, we examined and measured a current explicit policy system, Content
Security Policy (CSP). We examined the many benefits of Content Security Policy and
compared it to other techniques and technologies, showing its many advantages. We also
quantified and measured some of the problems and difficulties it presents, showing that it
has many potentially unforeseen pitfalls. We then suggested several possible paths toward
solving these problems.

Then, in Chapter 5, we looked at a current policy mechanism for embedding advertise-
ments, ADsafe. We built a system for dynamically checking the policy that it purports to
enforce. By running a set of experiments on real-world websites, we showed that, in fact, it
fails to enforce its own policies. We then showed how to fix these problems by introducing
a new static verifier, Blancura, that addresses these issues.

Finally, in Chapter 6, we looked towards more powerful, future techniques in policy
enforcement through type checking. Motivated by prior work that showed great promise
for statically enforcing security policies on web applications via type checking, we built a
translation from JavaScript programs into a well-typed language, MLjs. Utilizing many of
the important features of its parent language, F*, we show that MLjs provides an important
step towards the automated verification of JavaScript.

We believe that it’s vitally important to scientifically measure and understand how sys-
tems implicitly apply security policies to untrusted data in web applications. If we do not,
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we risk having an unfounded belief in the security of our systems, or even worse, no way
of protecting our applications. We believe that there is much future work to be done in
measuring and building new security technologies for web applications, but this work has
provided an important first step.

In this thesis, we have shown that we can understand and improve implicit web security
policies. We can study systems in place today to quantitatively and qualitatively under-
stand the advantages and problems of how they express security policies for untrusted data.
Furthermore, we have shown several novel techniques for improving on and building new
systems for enforcing security policies on web applications.
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Appendix A

Transductions in the Browser

Table A.1 details browser transductions that are automatically performed upon reading or
writing to the DOM. The DOM property denotes the various aspects of an element accessible
through the DOM APIs, while the access method describes the specific part of the API
through which a developer may edit or examine these attributes. Excepting “specified in
markup”, the methods are all fields or functions of DOM elements.

Table A.2 describes the specifics of the transducers employed by the browser. Except
for “HTML entity decoding”, the transductions all occur in the parsing and serialization
processes triggered by reading and writing these properties as strings. When writing to a
property, the browser parses the string to create an internal AST representation. When
reading from a property, the browser recovers a string representation from the AST.

Textual values are HTML entity decoded when written from the HTML parser to the
DOM via edge 1 in Figure 3.1. Thus, when a program reads a value via JavaScript, the
value is entity decoded. In some cases, the program must re-apply the sanitization to this
decoded value or risk having the server’s sanitization negated.

One set of DOM read access APIs creates a serialized string of the AST representation of
an element, as described in Table A.2. The other API methods simply read the text values of
the string versions (without serializing the ASTs to a string) and perform no canonicalization
of the values.

The transductions vary significantly for the DOM write access API as well, as detailed in
Table A.1. Some writes cause input strings to be parsed into an internal AST representation,
or apply simple replacements on certain character sequences (such as URI percent-decoding),
while others store the input as is.

In addition, the parsers in Figure 3.1 apply their own transductions internally on certain
pieces of their input. The CSS and JavaScript parsers unescape certain character sequences
within string literals (such as Unicode escapes), and the URI parser applies some of its own
as well (undoing percent-encoding).
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DOM property Access method | Transductions on | Transductions on
reading writing
get /setAttribute None None
data-* attribute .dataset None None
specified in | N/A HTML entity de-
markup coding
get /set Attribute None None
src, href attributes .src, .href URI normalization None
specified in | N/A HTML entity de-
markup coding
id, alt, title, type, lang, | get/setAttribute None None
class
dir attributes .Jattribute name] | None None
specified in | N/A HTML entity de-
markup coding
get /set Attribute None None
style attribute .style.® CSS serialization CSS parsing
specified in [ N/A HTML entity de-
markup coding
HTML contained by node .innerHTML HTML serialization | HT'ML parsing
Text contained by node .innerText, None None
textContent
HTML contained by node, | .outerHTML HTML serialization | HT'ML parsing
including the node itself
Text contained by node, | .outerText None None
surrounded by markup for
node
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Table A.1: Transductions applied by the browser for various accesses to the document.
These summarize transductions when traversing edges connected to the “Document” block
in Figure 3.1.

[ Type | Description
HTML entity decoding

| Tlustration
&amp; — &

Replacement of character entity refer-
ences with the actual characters they rep-
resent.

Tokenization and DOM construction fol-
lowing the HTML parsing rules, including
entity decoding as appropriate.

Creating a string representation of an
HTML node and its children.

HTML parsing <pi&sgt;i/pi — HTML ele-

ment P with body >

HTML serialization HTML element P with body

> = <pid&egt;i/pi

URI normalization Resolving the URI to an absolute one, | /article title —
given the context in which it appears. http://www.example.com/
article%20title
CSS parsing Parsing CSS declarations, including char- | color: \72\65\64 — color:

acter escape decoding as appropriate. red
Creating a canonical string representation | “color:#{00” —
of a CSS style declaration. rgb(255, 0, 0); 7

CSS serialization “color:

Table A.2: Details regarding the transducers mentioned in Table A.1. They all involve
various parsers and serializers present in the browser for HTML and its related sub-grammars.
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Appendix B
Alexa US Top 100

We list here the subset of the sites in the Alexa US Top 100 sites that we used in our
experiment. Note that the subset does not include the nine adult sites listed at the time of
access, nor does it include blogger.com because it is the same site as blogspot.com. Alexa
was accessed on May 1, 2009 to obtain the list of sites.

’ Rank \ Website \ # Suspicious Edges ‘
1 google.com 0
2 yahoo.com 0
3 facebook.com 17
4 youtube.com 2
5 myspace.com 36
6 msn.com 14
7 live.com 0
8 wikipedia.org 0
9 craigslist.org 0

10 ebay.com 13
11 aol.com 9
12 blogspot.com 13
13 amazon.com 2
14 go.com 0
15 cnn.com 33
16 twitter.com 60
17 microsoft.com 35
18 flickr.com 12
19 espn.go.com 1
20 | photobucket.com 60
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’ Rank \ Website \ # Suspicious Edges
21 | wordpress.com 0
22 comcast.net 62
23 weather.com 0
24 imdb.com 0
25 nytimes.com 61
26 about.com 0
27 | doubleclick.com 1
29 linkedin.com 0
30 apple.com 16
31 cnet.com 72
32 verizon.net 0
33 vmn.net 18
34 netflix.com 17
35 hulu.com 63
36 mapquest.com )
37 att.net 0
38 IT.com 70
39 adobe.com 59
40 foxnews.com 52
42 ask.com 0
43 mlb.com 3
44 | rapidshare.com 0
45 answers.com 3
46 walmart.com 0
48 fastclick.com 0
51 reference.com 10
52 bbc.co.uk 0
53 target.com 0
54 tagged.com 44
95 ning.com 0
56 | careerbuilder.com 37
57 dell.com 0
59 disney.go.com 0
60 digg.com 1
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APPENDIX B. ALEXA US TOP 100

’ Rank \ Website \ # Suspicious Edges ‘
61 att.com 0
62 usps.com 63
63 typepad.com 0
64 Wwsj.com 64
65 ezinearticles.com 0
66 bestbuy.com 1
67 foxsports.com 0
68 livejournal.com 20
69 thepiratebay.org 14
70 ehow.com 13
71 imageshack.us 2
72 tribalfusion.com 0
74 aweber.com 0
75 ups.com 0
76 megavideo.com 0
7 yelp.com 66
78 mozilla.com 0
79 deviantart.com 9
80 expedia.com 0
82 pandora.com 0
83 nba.com 61
84 newegg.com 28
86 irs.gov 0
87 | washingtonpost.com 0
88 cox.net 0
89 dailymotion.com 72
91 download.com 72
92 reuters.com 2
93 zedo.com 2
94 monster.com 17
95 people.com 1
96 | verizonwireless.com 37
97 realtor.com 1
98 ign.com 9
99 pogo.com 0

100 latimes.com 1

Table B.1: Subset of the Alexa US Top 100 sites used in the experiment.
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