
Verifying Higher-order Programs with the Dijkstra Monad

Nikhil Swamy1 Joel Weinberger2 Cole Schlesinger3 Juan Chen1 Benjamin Livshits1

Microsoft Research1 UC Berkeley2 Princeton University3

{nswamy, juanchen, livshits}@microsoft.com jww@cs.berkeley.edu cschlesi@princeton.edu

Abstract
Modern programming languages, ranging from Haskell and ML,
to JavaScript, C# and Java, all make extensive use of higher-order
state. This paper advocates a new verification methodology for
higher-order stateful programs, based on a new monad of predicate
transformers called the Dijkstra monad.

Using the Dijkstra monad has a number of benefits. First, the
monad naturally yields a weakest pre-condition calculus. Second,
the computed specifications are structurally simpler in several
ways, e.g., single-state post-conditions are sufficient (rather than
the more complex two-state post-conditions). Finally, the monad
can easily be varied to handle features like exceptions and heap
invariants, while retaining the same type inference algorithm.

We implement the Dijkstra monad and its type inference algo-
rithm for the F? programming language. Our most extensive case
study evaluates the Dijkstra monad and its F? implementation by
using it to verify JavaScript programs.

Specifically, we describe a tool chain that translates programs in
a subset of JavaScript decorated with assertions and loop invariants
to F?. Once in F?, our type inference algorithm computes verifi-
cation conditions and automatically discharges their proofs using
an SMT solver. We use our tools to prove that a core model of the
JavaScript runtime in F? respects various invariants and that a suite
of JavaScript source programs are free of runtime errors.

Categories and Subject Descriptors D.2.4 [Software/ Program
Verification]: Validation

General Terms Verification

Keywords Predicate transformer, Hoare monad, refinement types,
dynamic languages

1. Introduction
Once the preserve of languages like Haskell and ML, programming
with a mixture of higher-order functions and state is now common
in the mainstream. C# and Java provide first-class closures, which
interact with imperative objects in subtle ways, and in languages
like JavaScript, higher-order state is pervasive. When used prop-
erly, programming with these features can promote code re-use,
modularity, and programmer productivity. However, the complex-
ity of higher-order state poses serious difficulties for program veri-
fication tools. Consider the JavaScript program below.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $10.00

function incf(x) {x.f = x.f + 1; return x;};
assert (incf({f:0}).f == 1); incf=0;

To understand this program, we turn to Guha et al. (2010), who
desugar JavaScript to λ JS, an untyped lambda calculus with
references and key/value dictionaries. We show the desugared
JavaScript program below, with some superficial modifications—
notably, rather than use an untyped lambda calculus, we present the
desugared program in ML, where the typing is made explicit using
a standard ML variant type dynamic (Henglein 1994).

1 let incf this args = let x = select args "0" in
2 update x "f" (plus (select x "f") (Int 1)); x in
3 update global "incf" (Fun incf);
4 let args = let x = update (allocObject()) "f" (Int 0) in
5 update (allocObject()) "0" x in
6 let res = apply (select global "incf") global args in
7 assert(select res "f" = Int 1);
8 update global "incf" (Int 0)

The JavaScript function incf is translated to the let-bound λ -term
incf, with two arguments: this, corresponding to JavaScript’s im-
plicit this parameter, and args, an object containing all the (vari-
able number of) arguments that a JavaScript function may receive.
An object is a dictionary indexed by string keys, rather than con-
taining statically known field names. In the body of incf, the x ar-
gument is the value stored at the key "0" in the args object.

At line 3, the function incf is stored in the global object (an
implicit object in JavaScript) at the key "incf". At line 6 we see that
a function call proceeds by reading a value out of the global object
(using the library function select), calling the apply library function,
which checks that its first argument is a Fun f, and then applies f to
its next two arguments—here, the global object, the receiver object
for the call; and the args object containing a single argument.

Now, suppose that one wished to prove that the assertion at
line 7 succeeds. One needs to reason that line 6 was indeed a call to
incf. But, even proving this is non-trivial, since the call occurs via
a lookup into a higher-order store, in this case, the global object.
Making matters harder, the store is subject to arbitrary updates,
e.g., at line 8, the incf field is modified to be Int 0 instead. Thus,
in a language like JavaScript, even to reason about simple function
calls one needs to reason precisely about higher-order state.

1.1 SMT-based verification of higher-order stateful programs
Our main technical contribution is a new way of structuring spec-
ifications for higher-order, stateful programs, and of inferring and
automatically solving verification conditions (VCs) for these pro-
grams using an SMT solver.

Specifically, we present the Dijkstra monad, a new variant of the
Hoare state monad of Nanevski et al. (2008a). The Dijkstra monad
equips a state monad with a predicate transformer (Dijkstra 1975)
that can be used to compute a pre-condition for a computation, for
any context in which that computation may be used. We show how
to encode the Dijkstra monad in F?, a dependently typed dialect of
ML (Swamy et al. 2011a), and present several examples of F? pro-

grams verified using this monad, ranging from higher-order com-
binators and data structures, to implementations of cryptographic
protocols with stateful invariants (§2).

Verification is facilitated by a new type inference algorithm that
allows stateful programs written in “direct style” to be interpreted
in the Dijkstra state monad, yielding a VC for the program. We
prove our inference algorithm sound, which (informally) means
that if the VC computed for an F? program is provable, then the
program contains no failing assertions. Despite our liberal use of
predicate transformers and other higher-order logic constructs, we
prove that the VCs computed by our algorithm can be represented
in a first-order theory, and hence can often be discharged effectively
by SMT solvers like Z3 (de Moura and Bjørner 2008) (§2.3).

To illustrate the expressiveness of our approach, we show how
to program and verify implementations of abstract datatypes in-
volving a mixture of higher-order functions and local state. Our
verification technique employs a mixture of existentially quantified
abstract predicates and a lightweight specification style reminis-
cent of separation logic, all encoded using F?’s higher-order logic.
Nevertheless, we are still able to discharge verification conditions
automatically using an SMT solver (§3).

1.2 An extended case study: JavaScript verification

Our most extensive case study to date involves applying the Di-
jkstra monad to verify JavaScript programs, a problem of grow-
ing practical importance. Our verification tool chain first translates
JavaScript programs to JS? (a subset of F?), then uses our type
inference algorithm to compute VCs, and, finally, solves the VCs
automatically using Z3. The diagram below depicts this workflow.

Translation F* source

JS2JS*

Gate
keeper

JS*

JSPrims

Monadic
inference

VC Z3
Java

Script

Our translation, JS2JS?, adapts λ JS, retargeting it to a typed
language. We show how to make use of Gatekeeper (Guarnieri
and Livshits 2009), an unsound but efficient pointer analysis for
JavaScript, to convey verification hints in the translation, thereby
improving verification times while still maintaining soundness.

Besides higher-order state, a program verifier for JavaScript
programs also has to deal with dynamic typing. We show how to
smoothly integrate the Dijkstra monad within a variant type dyn,
a new refinement of type dynamic (Cartwright and Fagan 1991;
Henglein 1994). Using this type, we program a library of runtime
support for JavaScript (called JSPrims). The full version of JSPrims

(available online1) contains approximately 1,200 lines of carefully
hand-written, mechanically verified F? code, making heavy use
of the Dijkstra monad and type dyn to prove that several key
invariants related to the JavaScript heap are respected. Additionally,
our verification guarantees that well-typed clients of JSPrims do not
raise any JavaScript runtime errors. We present a simplified version
of JSPrims in §4.

We report on our experience using our tools to verify a col-
lection of JavaScript web-browser extensions for the absence of
JavaScript runtime errors. We provide a verification harness that
includes a partial specification of a sequential fragment of the Doc-
ument Object Model (DOM)—this specification makes heavy use

1 Supplementary material associated with this paper is available from http:
//research.microsoft.com/fstar, and includes a compiler down-
load, several example programs, and a technical report including proofs of
all the theorems in this paper.

of the Dijkstra monad, illustrating its versatility. In each case, apart
from the annotation of loop invariants, verification was automatic.
The soundness of our verification results rides conveniently on the
mechanized metatheory and certified implementation of F?—no
JavaScript-specific extensions to the type system are required (§5).

As such, using F? as an intermediate verification language, we
bring a methodology proven effective for first-order programs (us-
ing tools like Boogie (Leino and Rümmer 2010) or Why (Filliâtre
and Marché 2007)), to higher-order, stateful programs.

2. The Dijkstra Monad
Monads have traditionally been used to structure effectful com-
putations in functional programs. For example, the state monad,
ST a, is the type of a computation that when evaluated in an ini-
tial heap, produces a result of type a and a final heap. In a purely
functional language like Coq, ST a can be represented by the type
heap→ (a ∗ heap). In a language that provides primitive support
for state, e.g., ML, the type ST a can just be an abstract alias for
a. As a monad, the abstract type ST comes with two operations:
returnST : ∀a. a→ST a and bindST: ∀a,b. ST a→ (a→ST b)→ST b,
and these are expected to satisfy certain laws.

To verify stateful programs, Nanevski et al. (2008b) propose
Hoare Type Theory (HTT), where the main typing construct is
a state monad augmented with pre- and post-conditions. The re-
sulting monad, the Hoare monad, written HST pre a post, can be
understood as the type h:heap{pre h}→ (x:a ∗ h’:heap{post x h’})2
That is, HST pre a post is the type of a computation which when run
in an input heap h satisfying the predicate pre h, produces a result
x:a and an output heap h’ satisfying post x h’. The HST monad
comes with two operations, returnHST: ∀a, p. a→HST (p x) a p,
which allows a pure value to be treated as a computation; and
bindHST: ∀p a q b r. HST p a q→ (x:a→HST (q x) b r)→HST p b r,
which allows two computations to be composed, so long as the
post-condition of the first matches the pre-condition of the second.

While the Hoare monad has proven effective in verifying state-
ful code in a functional language, it has some shortcomings:
−Usually, with the Hoare monad one writes specifications in the
form of valid triples. This style does not lead directly to a VC gen-
eration algorithm. In order to extract a VC generation algorithm
from specifications in this style, Nanevski et al. have adopted a va-
riety of strategies in several papers. The original presentation of
HTT (Nanevski et al. 2008b) employs a custom-built bidirectional
typing algorithm to exploit the specific structure of HST to infer
VCs. Subsequent works (Nanevski et al. 2008a) show how to em-
bed HTT in Coq, where using a slightly different style of specifica-
tion, Coq’s type inference algorithm can be used to compute VCs
for programs in the HST monad. However, the VCs thus computed
involve a proliferation of existential quantifiers to state properties
of intermediate program states. Reasoning with these quantifiers,
particularly using automated SMT solvers, can be problematic.
−Additionally, writing precise specifications with the Hoare monad
requires post-conditions that circumscribe the write effects of a
computation, e.g., to say that the input and output heaps are the
same on some domain. To achieve this, one usually requires two-
state (a.k.a binary) post-conditions, or designs patterns like separa-
tion logic, adding complexity to the system.

Our key observation is that writing specifications for programs
using a monad of predicate transformers (Dijkstra 1975) can alle-
viate the above difficulties. We call the monad the Dijkstra monad,

2 Notation: we write x:t→t’ for a dependent function whose formal pa-
rameter x of type t is named and is in scope in the return type t’; and
(x:t ∗ t’) for a dependent pair where x names the t-typed first component
and is bound in the second component t’; and x:t{φ} for a refinement of
the type t to those elements x that satisfy the proposition φ .

and write it DST a wp. This is the type of a stateful computation
producing a result x:a, and whose behavior is described by the
weakest pre-condition predicate transformer, wp. In a purely func-
tional language, one may view DST a wp as an abbreviation for the
type ∀p. h:heap{wp p h}→ (x:a ∗ h’:heap{p x h’}). That is, in order
for the output heap h’ to satisfy p x h’, for any predicate p, one needs
to prove wp p h of the input heap h. DST provides two operations,
return and bind, with the signatures shown below:

return: ∀a. x:a→DST a (Λp. p x)

bind: ∀a wp1 b wp2. DST a wp1
→ (x:a→DST b (wp2 x))
→DST b (Λp. wp1 (λx. wp2 x p))

To inject a value x:a into the monad, one uses return, where the
weakest pre-condition is simply to prove the post-condition p for
x on the input heap. To compose computations, one can use bind,
where the weakest pre-condition of the result is simply computed
by composing the weakest pre-conditions of each component.

2.1 Simple examples
For a flavor of the Dijkstra monad, we show a selection of small
ML programs and their specifications. These examples illustrate
(1) the expressive power of the DST monad, in particular, the way
we describe precise effects using unary, parametric post-conditions,
and, how, using parametricity over the predicate transformers them-
selves, one can write precise specifications for higher-order pro-
grams; (2) the way in which the DST monad provides a VC gener-
ation algorithm by construction; and, (3), how the general construc-
tion can be varied to accommodate features like heap invariants for
monotonic state, as well as language features like exceptions.
Primitive operations on references. We start with types for the
primitives that manipulate references, where, as usual, the type
heap is viewed in the logic as a partial map from references of
type ref t to values of type t. We model the map using McCarthy’s
select/update theory of functional maps (McCarthy 1962), with the
usual interpretation. To reduce clutter in the notation, we assume all
function types are prenex quantified with their free type variables.

ref : x:a→DST (ref a) (Λp.λh. ∀l. l 6∈ dom h =⇒ p l (update h l x))
(!) : x:ref a→DST a (Λp.λh. p (select h x) h)
(:=): x:ref a→v:a→DST unit (Λp.λh. p () (update h x v))

We use the function ref to allocate a reference cell of type
ref a, initializing its contents to x:a. The weakest pre-condition of
ref states that for any post-condition p, the proposition to prove
on the input heap h is ∀l. l 6∈ dom h =⇒ p l (update h l x), i.e., ref x
returns a new heap location l not in the input heap h, and up-
dates h at location l with the argument x. We type the dereference
!(x:ref a) at the type a, as usual, and give it the weakest pre-condition
Λp.λh. p (select h x) h, i.e., dereference returns the contents of the
input heap h at location x, and leaves the heap unchanged. The type
of x := v is analogous, except we return ():unit, and the weakest pre-
condition states that the input heap h is updated just at x.

Note that in each case we were able to precisely state the re-
lation between the input and output heaps by relying on a para-
metric unary post-condition, instead of binary post-conditions. In
general, given a Hoare triple with a binary post-condition, i.e., the
type h:heap{pre h}→ (x:a ∗ h’:heap{post2 x h h’}), one can always
represent it using unary post-conditions and the Dijkstra monad as
DST a (Λp.λh. pre h ∧ ∀x h’. post2 x h h’ =⇒ p x h’).
Swapping references. Take the following ML program:

let swap x y = let tmp = !x in let = x := !y in y := tmp

To compute a weakest pre-condition for swap, one simply computes
the weakest pre-condition for each of the three commands, which
are then composed using two monadic binds. The resulting type is:

swap: x:ref a→y:ref b→DST unit
(Λp.λh. p () (update (update h x (select h y)) y (select h x)))

In contrast, using bidirectional VC generation for HST, one begins
with a user-provided post-condition which is then “pushed” back
through the computation. This is usually interleaved with a forward
phase that computes types for let-bound variables. At each let-
binding, one must close over the bound variable with an existential
quantifier. The additional quantifiers make proof obligations more
cumbersome to manipulate. These difficulties are avoided with
predicate transformers.
Higher-order functions. Predicate parametricity is also essential
for writing specifications for higher-order programs. Take the fol-
lowing combinator: let app f x = f x. Its type is

app: (y:a→DST b (wp y))→x:a→DST b (wp x)

By being parametric in wp, app is able to abstract over the spec-
ification of its function-typed argument. Similarly, the type of
let twice f x = f (f x), abstracts over the wp of the argument.

twice: (z:a→DST a (wp z))→x:a→DST a (Λp. wp x (λy. wp y p))

If we were to instead abstract over the pre- and post-condition of
the function argument f (rather than its wp) we would be forced
to reason about twice f using invariants only, e.g., it would be im-
possible to prove that twice (λx. x:=!x+1) x added 2 to x. Of course,
for programs with loops, we must resort to invariants. For example,
here is the type of the while-combinator.

while: guard:(unit→DST bool wpg)
→body:(unit→DST unit wpb)
→DST unit (Λp.λh0. inv h0
∧ ∀h1. inv h1 =⇒ wpg (λb h2. b=true =⇒ wpb (λ . inv) h2

∧ b=false =⇒ inv h2) h1
∧ ∀h1. inv h1 =⇒ p () h1)

The type above is parametric in wpg, the specification of the guard;
in wpb, the specification of the loop body; and in inv, the loop in-
variant. The three clauses of the wp of while require the invariant
to hold on the initial heap (inv h0); for the weakest pre-condition
of the body (with respect to the invariant once again) to hold if the
guard returns true, and otherwise for the invariant to hold imme-
diately; and finally, for the invariant to imply the post-condition,
i.e., the DST monad makes it easy to embed the standard weakest
pre-condition rule for a while-loop inside the types.
Monotonic state with two-state invariants. Some applications de-
mand variations on the basic DST monad. For instance, our supple-
mentary material contains an example of an authentication proto-
col based on digital signatures, verified using the Dijkstra monad.
A feature in our model of this protocol is the use of monotonic
state. In particular, we make use of a stateful log of protocol events,
log : ref (list event). For our model to be sound, at each state update,
we need to verify that no event has been removed from the log.
Rather than insert an explicit assertion at every command (which
would be impractically tedious), we would like a variant of the DST
monad that yields VCs with the necessary checks.

Our approach makes this easy to do. We provide the monad
iDST, a variant of DST with a bind that checks the invariant, as
shown in the signature below.

bind: iDST a wp1→ (x:a→ iDST b (wp2 x))
→ iDST b (Λp.λh0. wp1 (λx h1. δ h0 h1 ∧ wp2 x post h1) h0).

This type ensures that as the heap evolves, every pair of adjacent
heaps h0, h1 are related by the predicate δ h0 h1. The particular
instantiation of δ depends on the application. For our authoriza-
tion protocol, we instantiate δ to λh0 h1. ∀x. In x (select h0 log) =⇒
In x (select h1 log), (where In is for list membership), to ensure that
the list grows monotonically.

As we will see, our type inference algorithm is generic enough
to support arbitrary bind signatures, thereby allowing VC genera-
tion to be customized for the application at hand. In contrast, most
program verifiers, e.g., the tools based on the Boogie framework,
bake in a specific verification condition generation strategy into the
tool. For example, without explicitly sprinkling assertions between
every pair of commands, it is impossible to make Dafny (Leino
2010) check a two-state heap evolution invariant.

While the signature of bind requires us to prove that successive
heaps are related by δ , dually, we would like to benefit from the
invariant as well. When δ is reflexive and transitive, we show that
a heap and any of its descendants that may result during a program
execution are related by δ . Reflecting this property, we can provide
two axiomatic functions, witness, which takes a snapshot of the
current heap, and recall, which guarantees that the current heap is
related to any prior snapshot by δ :

witness: unit→ iDST heap (Λp. λh. p h h)
recall: h0:heap→ iDST unit (Λp. λh. δ h0 h =⇒ p () h)

The validity of these axioms is justified by our metatheory. Intu-
itively, since heap is abstract, the only heap values that are avail-
able to a program are those produced by witness. Thus, in recall, we
know that h0 is a heap snapshot, and by reflexivity and transitivity,
it must be related to the current heap by δ .
Combining monads. Handling language features like exceptions
within the Dijkstra monad is straightforward. For example, given a
monad for exceptions, we can combine it with the Dijkstra monad
to yield a monad for state and exceptions, with VC generation pro-
vided by construction. We first define a type result a to capture
the two kinds of results a computation may produce. Normal re-
sults are tagged with the constructor V : a→ result a, and excep-
tional results are represented using E: exn→ result a, for some type
of exceptions exn. Now, combining the result type with the DST
monad, we write eDST a wp, which can be understood as the type
∀p. h:heap{wp p h}→ (x:result a ∗ h’:heap{p x h’}).

val return: x:a→eDST a (Λp.p (V x))
val bind: eDST a wp1→ (x:a→eDST b (wp2 x))→eDST b wpBindE

where wpBindE = (Λp. wp1 (λ r h1. (∀ x. r=V x =⇒ wp2 x p h1)
∧ r=E =⇒ p r h1))

val raise: e:exn→eDST a (Λp.p (E e))
val tryWith: (unit→eDST a wp1)→ (e:exn→eDST a (wp2 e))

→eDST a (Λp. wp1 (λ r h. (∀ v. r=V v =⇒ p r h)
∧(∀ e. r=E e =⇒ wp2 e p h)))

2.2 Monadic F?

To develop a type inference algorithm and metatheory for the Dijk-
stra monad, we introduce monadic F?, a programming language
with a runtime semantics similar to ML (i.e., a call-by-value,
higher-order programming language, with primitive support for
general recursion, state, and exceptions), but with a type system
that extends ML’s with dependent refinements and the Dijkstra
monad for functional correctness verification using an SMT solver.

Figure 1 shows the syntax of monadic F?. Values include vari-
ables, n-ary data constructors, abstractions, and ascriptions. Ex-
pressions additionally include applications, let bindings, and oper-
ations on references. We exclude a fix-point form, since these can
be encoded using recursive data types. The full version of the paper
also includes support for raising and handling exceptions.

Types include type variables a, formulas φ , constants for the
heap, unit and references, user-defined inductive types T , type
application, refinement types, and polymorphic types. We have
two kinds of dependent function types: x:t→t’ is the type of a
pure function, and is typically used to type data constructors only.
The type of effectful functions is more generally described using
x:t→M t’ φ , a dependent function with a monadic co-domain. The

v ::= x | D t̄ v̄ | λx:t.e | Λa::κ.v | v:t value
e ::= v | v v | v t | let x = e in e |!v | v := v | ref v expression

| match v with D ā x̄→ e else e
t ::= a | φ | heap | unit | ref t | T | t t type

| x:t{φ} | ∀a::κ.t | x:t→ t | x:t→M t φ

φ ::= a | T | true | false | u = u | u ∈ u | φ ∧φ formula
| φ ∨φ | ¬φ | φ =⇒ φ | ∀x:t.φ | ∃x:t.φ
| ∀a::κ.φ | ∃a::κ.φ | λx:t.φ | φ u | Λa::κ.φ | φ t

u ::= v | t | select u u | update u u u | dom u | op ū logic term
κ ::= ? | E | x:t⇒ κ | α::κ ⇒ κ kind
Γ = · | Γ,x:t | Γ,a::κ typ. env.
Σ = M::κ, ret = φ ,bind = φ ′ | Σ,T ::κ{D:t} signature

Figure 1. Syntax of monadic F? (partial)

choice of monad M is left as a parameter in the system, except
that it must be indexed by both a result type t’ and a predicate
transformer φ . By restricting monadic types to the co-domain of
functions only, we borrow an insight from Swamy et al. (2011b),
who use a similar restriction to develop a type inference algorithm
for monadic ML. We generalize their work to the setting of a
dependently typed language. However, unlike that work which
supports typing a program with respect to multiple monads, in
monadic F? there is only a single monad. Note, polymorphic types
have non-monadic co-domains corresponding to a value restriction.

Formulas φ describe a standard, higher-order predicate logic
over a term language u that includes the values v and types t, inter-
preted functions from the select/update theory, other theories like
arithmetic, and uninterpreted functions of the user’s choosing. The
logic includes variables a, uninterpreted predicates T , constants,
equality, set membership, and all the usual connectives. We also in-
clude abstraction over terms and types (the two lambda forms) and
the corresponding application forms.

Types are organized into kinds, κ , with two base kinds: ? is the
kind of types given to computationally relevant values; and kind E
is for purely specificational types. In general, formulas φ are types
with kind E. We have dependent function kinds, both on values
x:t⇒ κ and on types a::κ ⇒ κ .

Type environments Γ bind variables to types and type variables
to kinds. A signature Σ defines the set of inductive types T ::κ and
their data constructors, the kind of the monad M, and the weakest
pre-condition specifications of its return and bind operators.

We generally omit explicit type applications and kind annota-
tions on type variables. These can usually be inferred.

2.3 Typing monadic F?

Figure 2 presents the two central judgments in the type system
of monadic F?. The first judgment, Γ ` e : t, infers a value-type
t for a term e in a context Γ. For effectful expressions, we have
Γ ` e : M t φ , which infers a type t and a weakest pre-condition φ

for an expression e from a context Γ. In both cases, the judgments
are implicitly parameterized by the signature Σ (when omitted).
Monadic signature. We define K(a) as KPost(a)⇒ heap⇒ E for
the kind of a predicate transformer from post-conditions on a-
computations to pre-conditions. The type system is paramet-
ric in the choice of KPost(a)—one may pick KPost(a) to be
a⇒ heap⇒ E for the DST monad, or result a⇒ heap⇒ E for the
eDST monad, etc. We expect M to have kind a::?⇒ K(a)⇒ ? ; Σ.ret :
a::?⇒ a⇒ K(a); and Σ.bind : a::?⇒ b::?⇒ K(a)⇒ (a⇒ K(b))⇒ K(b).
Observe how the signatures of Σ.ret and Σ.bind evoke a monad “one
level up”, i.e., they are monadic in the kind K(a). We expect the fol-
lowing three monad laws to hold, where equality is to be interpreted

Γ ok
Γ ` x : Γ(x)

Γ ok Σ(D) = ∀a::κ.x:t ′→ t ′′ ∀i.Γ ` ti :: κi[t/a] ∀i.Γ ` vi : t ′i [t/a][v/x]

Γ ` D t̄ v̄ : t ′′[t/a][v/x]

Γ,a::κ ` v : t
Γ ` Λa::κ.v : ∀α::κ.t

Γ ` v : ∀a::κ.t ′ Γ ` t :: κ

Γ ` v t : t ′[t/a]

Γ,x:t ` e : M t ′ φ

Γ ` λx:t.e : x:t→M t ′ φ

Γ ` v : t ′ Γ ` t ′ <: t
Γ ` (v : t) : t

Γ ` v : t
Γ ` v : M t (Σ.ret t v)

Γ ` e1 : M t1 φ1 Γ,x:t1 ` e2 : M t2 φ2 x 6∈ FV (t2)
Γ ` let x = e1 in e2 : M t2 (Σ.bind t1 t2 φ1 (λx:t1.φ2))

Γ ` v1 : x:t→M t ′ φ Γ ` v2 : t
Γ ` v1 v2 : M t ′ φ [v2/x]

Γ ` v : t0 Γ′ = a::κ,x:t ′ Γ,Γ′ ` D ā x̄ : t0 Γ,Γ′ ` e1 : M t φ1 Γ ` e2 : M t φ2

Γ `match v with D ā x̄→ e1 else e2 : M t (Λp.λh.(∀āx̄.v = D ā x̄ =⇒ φ1 p h) ∧ (v 6= D =⇒ φ2 p h))

Figure 2. Verification condition generation for monadic F?

as equi-satisfiability.

(1) Σ.bind t t (Σ.ret v) wp = wp v (left identity)
(2) Σ.bind t t wp Σ.ret = wp (right identity)
(3) Σ.bind t2 t3(Σ.bind t1 t2 wp1 wp2) wp3 = (associativity)

Σ.bind t1 t3 wp1 (λ x.Σ.bind t2 t3 (wp2 x) wp3)

It is easy to check that the laws are satisfied for the DST and
eDST monads (where Σ.ret=λx.Λp.p (V x) and Σ.bind = wpBindE),
and when the δ function is reflexive, for the iDST monad as well.
Kinding and well-formedness of environments. We write Γ ok
for an environment that binds unique names at well-formed kinds
and well-kinded types. We omit the judgments for well-formedness
of kinds and the kinding judgment—these are inherited from F?

without any change and we refer the reader to Swamy et al. (2011a)
for details. Additionally, we require each inductive definition in the
signature Σ to be well-formed (again, this is inherited from F?).
Value typing. The first six rules in Figure 2 compute non-monadic
types for values and type applications. The first four rules are
straightforward. In the fifth rule, notice how we compute specifica-
tions for functions independently of any particular post-condition.
The sixth rule is a subsumption rule triggered by a programmer-
supplied ascription. The subtyping relation Γ ` t ′ <: t is inherited
from F?, and is implemented by a call to an SMT solver (Swamy
et al. 2011a). The main interesting case is in proving a subtyping
relation between two monadic types. We have Γ ` M t1 wp1 <:
M t2 wp2 when Γ ` t1 <: t2 and when Γ,p::KPost(t),h:heap |=
wp2 p h =⇒ wp1 p h.
Expression typing. The first expression typing rule corresponds
to a monadic unit—it allows a value v to be injected into the
monad using Σ.ret. We interpret let-bindings as a monadic bind—
we compute the type of each component, insist that the let-bound
variable does not escape in the result type (although it may appear
in φ2), and compose the results using Σ.bind. The rule for function
application is standard for a dependently typed language. To type a
match, we type each branch and compute a predicate transformer by
guarding the pre-conditions of each branch by the branch condition
and closing over the pattern-bound variables. We do not show
specific typing rules for operations on references; these are typed
according to the signatures of ref, (!) and (:=) shown previously.
Soundness. We prove the soundness of the type system against the
operational semantics for F?—a standard small-step, call-by-value
reduction relation (H,e)→Σ (H ′,e′), which relates a pair of run-
time configurations consisting of a store H (mapping locations to
values) and an expression e. We prove the soundness for specific in-
stantiations of KPost(a)—here, for KPost(a) = result a⇒ heap⇒ E ,
i.e., for a language whose primitive effects include state and ex-
ceptions. Layering other monadic effects (e.g., probabilities, or re-
activity, etc.) over the the primitive ones is also possible, and the
same metatheory should carry over. In the theorem below, we write
Σ;Γ ` (H,e) : M t φ to type a runtime configuration—this extends
expression typing with a typing for the store H in a standard way.
We also write asResult v for V v and asResult (raise e) for E e.

THEOREM 1 (Soundness). Given Σ ok, and Γ, H, e, t, and wp such
that Σ;Γ ` (H,e) : M t wp; and an interpretation function asHeap
from runtime stores H to the type heap; and a post-condition p such
that Σ;Γ |= wp p (asHeap H) is derivable; either: (1) e is a result
r and Σ;Γ |= p (asResult r) (asHeap H); or, (2) there exist H ′,
e′,wp′, such that (H,e)→Σ (H ′,e′), Σ;Γ ` (H ′,e′) : M t wp′ and
Σ;Γ |= wp′ p (asHeap H ′).

First-order VCs. We also prove that the VC generation does not
introduce higher-kinded quantification where none exists. To state
this theorem, we introduce a judgment ` (Σ;Γ) ord1, which is
true of first-order contexts, i.e., those that do not use higher-order
formulas in the refinement logic like ∀α::κ.φ where κ 6= ?. The
theorem states that when computing a wp for a term in such a
first-order context, and when that wp is applied to a first-order
post-condition and a heap, the resulting VC can be reduced to a
first-order normal form, e.g., no Λs remain—this is the essence of
the judgment Σ;Γ ` φ ord1, below. This result is important since
we aim to translate VCs to SMT solvers which do not support
quantification over predicates.

THEOREM 2 (First-order VCs). If Σ;Γ ` e : M t wp; and `
(Σ;Γ) ord1; and Σ;Γ ` p ord1; then Σ;Γ,h : heap ` (wp p h) ord1.

3. Abstract predicates and local state
While Theorem 2 (First-order VCs) ensures that programs with-
out higher-order assertions yield VCs that are first-order, this does
not rule out the use of higher-order specifications. Indeed, careful
use of higher-order logic in monadic F? makes it possible to rea-
son modularly about features like local state, while still allowing
automated verification via an SMT solver. We briefly present an
example for illustration.

Consider the two functions below, evens and evens’.

let evens () = let x, y = ref 0, ref 0 in λ (). let r = !x + !y in incr x; incr y; r
let evens’ () = let x = ref 0 in λ (). let r = 2∗!x in incr x; r

Both these functions return closures which yield the same se-
quence of even numbers when they are called. To see why, we can
reason informally that the closure returned by evens captures two
references x and y that remain local to the closure, both references
always contain the same value at the entry and exit of the closure, so
!x + !y is always even. A similar line of reasoning applies to evens’,
although it uses only one reference.

We would like to be able to give specifications to both evens and
evens’ that state that the references they allocate are owned by their
respective closures; that their invariants are maintained irrespective
of the actions of their clients; and, finally, for the clients’ view of
the specifications of evens and evens’ to be identical, hiding the
differences in the representation of their internal data structures,
e.g., the number of references they use.

This is a classic problem of information hiding and modular
verification considered in many lines of work (Barnett et al. 2004;
Nanevski et al. 2007; O’Hearn et al. 2004; Parkinson and Bierman
2005). Monadic F? can capture the specification style of several

of these approaches naturally, e.g., the higher-order style of exis-
tentially quantified predicates of Nanevski et al. (2007), while still
retaining the ability to automatically discharge proof obligations.
Our solution, sketched in the remainder of this section, also illus-
trates common idioms we employ to control and simplify the use
of the DST monad.

Note, from here on, we use the concrete syntax of F? in our
examples. This is based closely on the syntax of the previous
section and notations from F# and OCaml. We also use several
conveniences such as curried function types and dependent pairs
that are supported by our implementation.

3.1 Notation to structure the use of the DST monad
For many kinds of programs, exposing the full generality of the Di-
jkstra monad in specifications can be overwhelming. For example,
it would be preferable to not have to think about state, exceptions,
and other unrelated concerns when using the DST monad to write
specifications for a pure function. To facilitate this, we define ab-
breviations for several common special cases of the DST monad,
each a monad in its own right.

type Pure t requires ensures =
DST t (Λpost h. requires ∧ ∀x. ensures x =⇒ post x h)

type Reader t requires ensures =
DST t (Λpost h. requires h ∧ ∀x. ensures x h =⇒ post x h)

type Writer t requires ensures m =
DST t (Λpost h. requires h ∧

(∀ x h’. ensures h x h’ ∧Mods m h h’ =⇒ post x h’))
and Mods m h h’ = ∀x. x ∈ dom h ∧ x6∈m

=⇒ x ∈ dom h’ ∧ select h x = select h’ x

For example, we use Writer t requires ensures m to type t-
computations that read the heap, whose writes are confined to the
set of references m, and which may also allocate new references.
Notice the definition of Mods m h h’—it states that h and h’ agree
on all references that exist in h, except for the ones in the set m.

To make it easy to remember the interpretation of the last three
indexes of Writer, we tag them with the following identifiers, each
an identity function.

type Requires r = r type Ensures r = r let Modifies m = m

Using these tags, a function that increments an integer refer-
ence can be given the type below, hiding the complexity of predi-
cate transformers under a notation evocative of that used by other
Hoare-style verifiers.

x:ref int→Writer unit (Requires λh.True)
(Ensures λh () h’. select h’ x = select h x + 1)
(Modifies {x})

3.2 Heap permissions and fragments
Monadic F? provides the flexibility to work with many different
styles of specifications. For example, we can introduce a permis-
sion model (shown below) to control the use of references. We use
an abstract predicate Perm r h to indicate that the program has per-
mission to use the reference r in heap h. The pre-condition to read,
write or free a reference r requires the caller to hold the permission
to r. The specification of write r v ensures that the caller retains per-
mission on r after the heap is updated. The alloc function returns
a new reference r and ensures the caller has permission to use it,
while free consumes the permission of the deallocated reference.

We also use features inherited from F? to axiomatize and in-
ternalize spatial connectives (like the separating conjunction from
separation logic) into monadic F?. The listing below introduces a
logical value Frag whose semantics is axiomatized (using the three
assume expressions) so that Frag h fp is a heap whose domain is
precisely the set of references fp and whose values on that domain
agree with h. We call Frag h fp the fp-fragment of h.

(∗ Permissions on heap references∗)
type Perm :: ref a⇒ heap⇒ E
val read: r:ref a→Reader a (Requires (Perm r))

(Ensures λh v. v=select h r)
val write: r:ref a→v:a→Writer unit (Requires (Perm r))

(Ensures λh () h’. Perm r h’
∧ select h’ r=v)

(Modifies {r})
type Fresh s h = ∀r. r ∈ s =⇒ r 6∈ dom h
val alloc: v:a→Writer (ref a) (Requires λh.True)

(Ensures λh r h’. Fresh{r}h ∧ r∈dom h’
∧ select h r = v ∧ Perm r h’)

(Modifies {})
val free: r:ref a→Writer unit (Requires (Perm r))

(Ensures λh r h’. r6∈dom h’)
(Modifies {r})

(∗ Fragments of heaps ∗)
logic val Frag : heap→ refset→heap
assume ∀fp h x. x ∈ fp =⇒ select (Frag h r) x = select h x
assume ∀fp h x. if x ∈ fp then x ∈ dom (Frag h fp)⇐⇒ x ∈ dom h

else x 6∈ dom (Frag h fp)
assume ∀h1 h2 fp. (∀ x. x ∈ fp =⇒ select h1 x = select h2 x)

=⇒ Frag h1 fp = Frag h2 fp
type Star P Q h = ∃f1 f2. f1 ∩ f2 = /0 ∧ P (Frag h f1) ∧ Q (Frag h fp2)
type On fp P h = P (Frag h fp)

Using Frag, we define the heap-predicate Star P Q to be valid on
a heap h if h contains disjoint fragments fp1 and fp2 such that P and
Q are valid on each of those fragments. We also define On fp P, a
heap predicate valid if P holds on the fp-fragment of a heap.

3.3 Specifying and verifying evens and evens’

With the heap permission model in place, we show how to program
and verify our examples, evens and evens’. The main idea structur-
ing our solution is to package a closure with an existentially quan-
tified invariant on its local state, where the invariant encapsulates
the permissions required to use the references private to the closure
(thereby ensuring that a client cannot access these references). The
type t below defines this existential package:

type t = MkT: Inv::heap⇒ E→ fp:refset→ (unit→evens t Inv fp)→t
and evens t Inv fp =

Writer int (Requires (On fp Inv))
(Ensures λh x h’. x mod 2 = 0 ∧ On fp Inv h’)
(Modifies fp)

A t-value MkT Inv fp f is a triple consisting of a heap-predicate
Inv, a set fp of references (representing the footprint of the invari-
ant), and a closure f:unit→evens t Inv fp, a function in the Writer
monad whose pre-condition requires that Inv be valid on the fp-
fragment of the input heap, and which ensures that it returns an
even integer; that Inv remains valid on the same fragment of the
output heap; and that only references in fp may be modified. Ob-
serve that this type reveals no information about the structure of the
local state of f, although it guarantees that f always returns an even
integer. (Note, if we wanted to prove that each call to f returned the
next even integer, we would have to augment MkT with additional
(ghost) state. This is relatively straightforward to do, although we
omit it here for simplicity.)

Next, we show the type of evens and evens’ (the same for both).

val evens,evens’: unit→Writer t
(Requires λ h. True)
(Ensures λ h v h’. Fresh (fp v) h ∧ On (fp v) (Inv v) h’)
(Modifies {})

This is the type of a function in the Writer monad with a trivial
pre-condition returning a t-value. To state the post-condition, we
project the footprint and the invariant component of the v:t result
using the logical projectors fp:t→ refset and Inv::t⇒ heap⇒ E that

are provided in F?’s logic for the data type t. We assert, first, that the
references in the footprint (fp v) are freshly allocated, and second,
that the existentially bound invariant (Inv v) is valid on the fragment
of the output heap h’ corresponding to the footprint. Additionally,
both functions do not modify any existing reference.

The listing below shows the implementation of evens and evens’,
each returning the closures we showed earlier packaged as a t-value
with a suitable invariant. The invariant for evens is Inv1 x y, which
states that the closure holds the permission to x and y, and that the
values of these references are always the same in the heap. The
invariant for evens’ is just Perm x, just stating that its closure holds
permission to x.

type Inv1 x y h = Perm x h ∧ Perm y h ∧ select h x=select h y
let evens () = let x,y = alloc 0, alloc 0 in

let f () : evens t (Inv1 x y) {x,y} =
let r = read x + read y in incr x; incr y; r in
MkT (Inv1 x y) {x,y} f

let evens’ () = let x = alloc 0 in
let f () : evens t (Perm x) {x} =

let r = read x in incr x; 2∗r in
MkT (Perm x) {x} f

These examples, while particularly simple, illustrate a general
pattern in monadic F? for writing specifications over local state.
We make use of this pattern in programming other, more complex
examples, e.g., a verified ring buffer programmed using arrays,
local state, and a record of closures to mimic an object-oriented
programming style. We discuss this briefly in §5.

4. Dynamic typing in monadic F?

We turn now to our main case study, JavaScript verification. While
JavaScript is increasingly used for both web and server-side pro-
gramming, it is a challenging language for verification and analysis,
in part due to its highly dynamic nature. We implement a transla-
tion, JS2JS?, from JavaScript to F?, based closely on λ JS (Guha
et al. 2010). The image of this translation is JS?, an idiomatic sub-
set of monadic F?.

A first difficulty in translating JavaScript to F? is to represent
JavaScript’s dynamic typing. In principle, to handle dynamic typ-
ing in an ML-like language, one simply provides a variant type dyn,
with cases for each primitive type constructor in the language, e.g.,
Int : int→dyn, Fun: (dyn→dyn)→dyn, while systematically insert-
ing injections and projections to and from type dyn. So, intuitively,
we compose the λ JS translation with a translation that adds type
dyn systematically to produce a JS? program. JS? programs are
linked against a library called JSPrims, which includes type dyn, as
well as functions providing runtime support for coercions, object
manipulation, prototype traversal, etc. The formalization of JS2JS?

and the full JSPrims library are available online.

4.1 A refined type dynamic
The basic approach of inserting the standard type dyn systemati-
cally throughout the program is conceptually simple, but also not
very useful—nearly every term is typed at dyn. Our first step to-
wards verifying JavaScript programs, then, is a new refined type
dyn that recovers the precision of static typing.

The listing below shows the (partial) definition of our type dyn,
suitable for use with JavaScript programs translated to JS?. For ex-
ample, we have the constructor Num, which allows a number n:float
to be injected into the dyn type. However, the type of Num n is
d:dyn{TypeOf d = float}, where TypeOf: a::?⇒ a⇒ E is an uninter-
preted function from values to types in the refinement logic. In ef-
fect, the refinement formula recovers the static type information.
The case of strings and objects is similar—note, an object is repre-
sented as a mutable map from strings to dyn values.

type dyn =
| Num : float→d:dyn{TypeOf d = float}
| Str : string→d:dyn{TypeOf d = string}
| Obj : ref (map string dyn)→d:dyn{TypeOf d = object}
| Fun : ∀wp::dyn⇒ dyn⇒ (dyn⇒ heap⇒ E)⇒ heap⇒ E .

(this:dyn→args:dyn→DST dyn (wp args this))
→d:dyn{TypeOf d = AsE wp}

| Undef : d:dyn{TypeOf d = undef} . . .

The type of Fun merits closer attention. JavaScript functions al-
ways take two arguments—the first is for the implicit this param-
eter; the second is an object containing a variable number of fields,
one for each of the variable number of actual parameters. So, to a
first approximation, the type of Fun is (dyn→dyn→dyn)→dyn,
but this is, of course, too imprecise. To recover precision, we
type each function in the DST monad and refine the type of
Fun to record the predicate transformer of the function in the
refinement logic. From the type d:dyn{TypeOf d = AsE wp}, we
can conclude that the underlying value is a function of type
this:dyn→args:dyn→DST dyn (wp args this). (Note, AsE is just a
type constructor that coerces the kind of wp to E-kind.)

Our full library includes other JavaScript primitive types; a
more complicated type for Fun, which allows functions to also be
treated as objects (as required by JavaScript); and types/functions
to model exceptions and JavaScript’s control operators. We leave
them out of this paper due to space constraints.

4.2 An API for JS?

Next we discuss some key fragments of JSPrims, simplified sub-
stantially for the purposes of the paper. JSPrims defines the set of
JavaScript runtime errors we capture.
Safe field selection. To select a field f:string from an object o:dyn,
JS? programs call selField o f (corresponding to the JavaScript
source operation o.f or o["f"]). The implementation of selField
(line 8 below) elides several details of prototype chain traversal,
functions as objects, etc. In its most basic form, selecting a field
requires o to be an object. We dereference the map location, lookup
the key f and return the value, if it exists.

1 define SelField h (Obj l) f = Map.select (select h l) f
2 define HasField h (Obj l) f = In f (Map.domain (select h l))
3 val unreachable: unit→DST a (Λp.λh. false)
4 val lookup: m:map a b→x:a→option (y:b{y=Map.select m x})
5 val selField: o:dyn→ f:string→Reader dyn
6 (Requires λh.TypeOf o=object∧HasField h o f)
7 (Ensures λh v. v=SelField h o f)
8 let selField o f = match o with
9 | Undef | Str | Int | Fun →unreachable ()

10 | Obj l→match lookup !l f with Some v→v
11 | None→unreachable()

We aim to give a specification to selField that ensures that well-
typed JS? clients avoid various JavaScript errors. Projecting a field
from a non-object is prevented by the clause in the precondition
(line 6) which requires TypeOf o = object. We also ensure that the
field f be among the defined fields of the objects (HasField h o f).

If the field does not exist, JavaScript semantics permits return-
ing the undefined value, which is, strictly speaking, not an er-
ror condition. However, checking for the absence of unexpected
undefined values in a JavaScript program is generally considered a
good idea (Crockford 2008), so we check for it here. At line 7, the
specification ensures that selField returns the contents of the f field
of o, and that the heap is unchanged.

Note, the definitions at lines 1-2 provide two functions in the
logic, corresponding to projecting a field from an object and to
testing whether a key exists among the fields of an object. We
interpret the map type as a functional array, and use functions
Map.select/Map.update/Map.domain, with the usual interpretation.

Safe field update. To update a field f:string from an object o:dyn
with a value v:dyn, JS? programs call updField o f v (corresponding
to the JavaScript source operation o.f = v or o["f"] = v).

The specification of updField has a similar form to that of
selField. The caller is required, first, to prove that o is an object
(trying to update a non-object is a JavaScript error). Note, the field
f need not exist in o—JavaScript permits adding fields to an ob-
ject “on the fly”. The specification also states that updField returns
Undef and updates just the heap accordingly. The modifies clause
uses a projector provided in F?’s logic Obj proj 0 to state that only
the reference held in o is modified.

1 define UpdField h (Obj l) f v =
2 update h l (Map.update (select h l) f v)
3 val insert: m:map a b→x:a→y:b
4 →m’:map a b{m’=Map.update m x y}
5 val updField: o:dyn→ f:string→v:dyn→Writer dyn
6 (Requires λh. TypeOf o=object)
7 (Ensures λh u h’.u=Undef ∧ h’=UpdField h o f v)
8 (Modifies {Obj proj 0 o})
9 let updField o f v ’Post h = match o with

10 . . . | Undef | Str | Int | Fun →unreachable ()
11 | Obj l→ l := insert !l f v; Undef

Safe function application. Informally, for f:dyn, this:dyn, args:dyn,
the term apply f this args corresponds (roughly) to the JavaScript
construct this.f(a1,...,an), where args is an object containing
the n actual parameters. As in the other cases, our goal is to ensure
that function applications in JS? (and hence in JavaScript) do not
cause errors. There are two things that could potentially go wrong.
First, f may not be a function—it is an error in JavaScript to apply,
say, an integer. Second, f’s pre-condition may not be satisfied.

Addressing both these concerns, we show the type and imple-
mentation of apply below.

1 val apply: f:dyn→this:dyn→args:dyn→DST dyn (Λp.λh.
2 ∃ wp. TypeOf f = AsE wp ∧ wp args this p h)
3 let apply f this args = match f with Fun fn→ fn this args
4 . . . | Undef | Str | Int | Obj →unreachable ()

The implementation of apply is straightforward—it checks that
f is a function and applies it. The specification of apply requires the
client to prove that f is indeed a function with some wp, and then
to prove the pre-condition computed by that wp for the particular
arguments and post-condition needed at the call site.

4.3 Computing VCs for JS?

We prove that VC generation always succeeds for any loop-free JS?

program. Programs with loops must be annotated with invariants.
We write [[e]] for the translation of a λ JS program to JS?.

THEOREM 3 (VC generation is complete on JS?). Given a loop-
free λJS term e. Then, for the signature ΣJSPrims, there exists wp
such that · ` [[e]] : M dyn wp.

By default, the VC for a JS? program is not first-order. Notably,
each call to apply introduces an existentially bound predicate trans-
former. Our full paper shows how such existentially bound trans-
former variables can be eliminated using the model-finding features
of an SMT solver. However, this procedure can be quite expensive
(cf. the verification time of Facepalm in the next section).

We describe here a more efficient approach that we also imple-
ment. Specifically, instead of apply we use apply hint shown below,
where, instead of existentially quantifying over the wp, we require
the caller to instantiate the wp explicitly.

val apply hint: wp::dyn⇒ dyn⇒ (dyn⇒ heap⇒ E)⇒ heap⇒ E
→ f:dyn→this:dyn→args:dyn
→DST dyn (fun post h⇒ TypeOf f=AsE wp ∧ wp args this post h)

Unlike apply, the type of apply hint satisfies our ord1-restriction,
and the VCs produced when calling apply hint can be handled
within a first-order solver like Z3.

Of course, one still needs a way to compute the type argument
of apply hint. We use Gatekeeper, a pointer analysis for JavaScript,
to produce a set of possible function call targets. We carry this in-
formation in the JS2JS? translation and use it to compute the type
arguments of apply hint. The example below illustrates this proce-
dure, where the JavaScript program on the left is translated to the
JS? program on the right.

function foo(x) {...}
foo({f:0});
foo = 17;

let foo this args = ... in
update global "foo" (Fun ’U0 foo);
apply hint ’U0 (select global "foo")

global (...);
update global "foo" (Int 17)

Each lambda-term in the translated program produces an applica-
tion of the Fun constructor. For each such function, JS2JS? inserts
a new unification variable, ’U0 in our example, as the first argu-
ment to Fun. When the type inference algorithm computes a pred-
icate transformer for foo, say FooTX, ’U0 is unified with FooTX.
Next, at each call site where Gatekeeper is able to definitively re-
solve a function call to a particular closure (say, foo), JS? inserts a
call to apply hint, passing as a first parameter the same unification
variable (’U0) that was used when translating foo. As type infer-
ence proceeds and ’U0 is unified with FooTX, the witness argument
to apply hint is suitably unified too. We also support variants of
apply hint in case Gatekeeper cannot resolve a call target to a sin-
gleton. Note, we do not rely on the soundness of Gatekeeper (in
fact, it is occasionally unsound)—an incorrect instantiation will be
trapped by the theorem prover.

5. Experimental evaluation
To date, we have verified nearly 3,000 lines of F? code using the
Dijkstra monad, summarized in Figure 3. The verification time
(column TC) was collected on a 3.2GHz Windows 7 machine.
The first class of examples is a set of 26 programs, listed in a
single line in the table as ex0–ex25, and totaling 400 lines of
code. These examples include the code discussed in §2.1, and
others of a similar flavor. We have also ported three programs
implemented by Chen et al. (2010) in Fine to monadic F?. The
first, ac, is a simple access control scheme. Next, automaton is
a program that implements a type-state protocol on files—coded
in monadic F?, we no longer need to thread affine tokens and a
store. Finally, iflow is a monadic encoding of information flow
control. Ported to monadic F?, it highlights monadic layering—we
can easily combine the Dijkstra state monad with a programmer-
defined information flow monad. The programs auth and auth2
implement variations of a protocol that used digital signatures for
authentication. They use the iDST monad to maintain an invariant
on mutable memory that is used to track a collection of protocol
events. The examples evens is the local state example of §3. The
programs ringbuf1 and ringbuf2 program and verify a ring buffer
based on a problem specification provided by the 2012 VSTTE
verification competition. JSPrims is our most complex example: it
provides a precise type interface suitable for verifying functional
correctness of JS? programs, while implementing runtime support
including coercions, prototype traversal, and the JavaScript calling
convention. It uses the eDST and iDST monads to include reasoning
about exceptions and a two-state invariant that controls how the
JavaScript heap evolves.

The remaining programs are JavaScript web-browser extensions
translated to JS? for verification. These extensions are based on
those studied by Guha et al. (2011). We prove each extension free
of runtime errors, assuming a sequential model for the DOM. Our

Name LOC(JS) TC (sec) Description

ex0–ex25 406 9.1 Classic combinators and data struct.
ac 38 6.5 Access control (PLDI ’10)
automaton 53 7.5 Typestate on files (PLDI ’10)
iflow 115 10.1 Information flow monad (PLDI ’10)
auth 52 6.2 Digital sig. with monotonic state
auth2 53 6.8 Variation of authentication above
evens 59 2.9 Local state for even streams
ringbuf-1 192 22.0 Ring buffer with global invariants
ringbuf-2 154 21.8 Ring buffer with local state
JSPrims 1,131 63.5 Runtime support for JavaScript
Untiny 59 (9) 11.0 Send selected URL
Delicious 65 (13) 11.3 Bookmark selected text
Passward 111 (29) 42.7 Store and retrieve passwords
HoverMagn 60 (23) 38.1 Magnify text under the cursor
Typograf 106 (28) 65.5 Format text a user inputs
Facepalm 270 (82) 718.0 Find contacts from Facebook
Total 2,924 (184) 17m 23s

Figure 3. Summary of experiments

verification methodology is designed for proving the functional
correctness of programs, although, in the absence of specifications
for JavaScript programs in the wild, our tool checks for safety.

To simplify verification, in some cases, we model collections
of objects by iterators, whereas the standard DOM API provides
collections of objects as arrays encoded using dictionaries. We
expect to support the array idioms in the near future, although
precisely modeling asynchrony in the DOM is substantial future
work. The remainder of this section discusses three extensions in
detail.

5.1 HoverMagnifier
Our first extension is HoverMagnifier, an accessibility extension.
It magnifies the text under the cursor. A key part of its code is
shown below—it involves the manipulation of a collection of DOM
elements.

1 function magnify(evt) { ... }
2 var elts = document.getElementsByTagName("body");
3 var body = elts.Next();
4 if (body !== undefined) {
5 body.onmousemove = function (evt){magnify(evt);};
6 body.onmousemove(dummyEv);} //for verif. harness

At line 2 it calls the DOM function getElementsByTagName to get
all the <body> elements in a web page. Line 3 gets the first element
in the result set. Then, it checks if the body is undefined and line
5 sets an event handler, magnify, to be called whenever the user’s
mouse moves—we elide the definition of magnify.

Setting up a verification harness for such a program involves
two main elements. First, we need some “driver” code to ensure
that all the relevant parts of the program are exercised. For example,
we add the code at line 6 to mock the firing of a mouse-move
event, so that the code in magnify becomes reachable. Without
this, our verification tool would still infer a weakest pre-condition
for magnify, but since no call to it appears in the program, the
pre-condition would be trivially satisfied. (In §5.3, we show how
one can avoid writing such driver code by instead writing better
specifications for library functions.)

We also have to provide specifications for all the APIs used by
the program. For our extensions, this API is the DOM. For each
kind of DOM concept (document, element, style, etc.), we define
a corresponding F? type—a predicate stating that an object is an
instance of the concept. For element, a predicate EltTyping h elt
means that elt is an element in heap h.

1 type EltTyping h elt =
2 TypeOf elt = object ∧ ... ∧ HasField h elt "text"
3 ∧ TypeOf (SelField h elt "text")=string
4 ∧ HasField h elt "getFirstChild"
5 ∧ TypeOf (SelField h elt "getFirstChild") =
6 AsE (λargs this post h’. IsElt h this ∧
7 ∀child. (child=Undef ∨ IsElt h’ child) =⇒ post child h’)
8 and IsElt :: heap⇒ dyn⇒ E
9 assume IsElt trans:∀ h1 h2 x.

10 (IsElt h1 x ∧
11 (SelField h1 x "text")=(SelField h2 x "text") ∧ . . .
12 (SelField h1 x "getFirstChild")=
13 (SelField h2 x "getFirstChild"))
14 =⇒ IsElt h2 x
15 assume IsElt typ:∀ h x. IsElt h x =⇒ EltTyping h x

The predicate EltTyping (line 1) states that elt is an object, it has
(among others) a field "getFirstChild", and that this field is a
function whose specification is given by the predicate transformer
at lines 6–7. Informally, "getFirstChild" expects its first argu-
ment (the implicit this pointer) to be a DOM element e, and, if e
is not a leaf node, it returns another DOM element (otherwise re-
turning Undef). Capturing this specification involves the use of an
abstract inductive predicate IsElt, and then providing two assump-
tions (at the bottom of the display) giving it an interpretation. The
assumption IsElt trans states that IsElt is transitive in its heap argu-
ment (if the relevant fields of the element elt have not changed),
and IsElt typ expands IsElt back into EltTyping.

The next listing shows the predicate DocTyping, a partial speci-
fication for the document object (line 1). It states that the object doc
contains a field "getElementsByTagName" that stores a function-
typed value. The pre-condition for this function requires that it be
called with its this argument set to the doc object itself. Statically
predicting the this pointer of a function is non-trivial. For example,
in the following program, the final function call receives the object
o as the this parameter: o.f = document.getElementsByTagName

; o.f(). This can be problematic, and, in the case of the DOM,
leads to a runtime error. We rule out this kind of error by requiring
that every call to getElementsByTagName must pass a this parame-
ter equal to the document object doc.

1 type DocTyping h doc = HasField h doc "getElementsByTagName"
2 ∧ . . . ∧ TypeOf (SelField h doc "getElementsByTagName") =
3 AsE (λargs this post h1.
4 (this = doc ∧ SingletonString h1 args ∧
5 (∀ x. Enum IsElt h1 x =⇒ post x h1)))
6 and Enum p h d = TypeOf d=object ∧ d ∈ dom h ∧
7 HasField h d "Next" ∧ TypeOf (SelField h d "Next") =
8 AsE (λargs this post h’. this = d ∧
9 ∀x. (x=Undef ∨ p h’ x) =⇒ post x h’)

The pre-condition of getElementsByTagName also requires that
its arguments object args contain a single string field (the predi-
cate SingletonString, elided here for brevity). The post-condition
of getElementsByTagName is captured by line 5. It states that the
function does not change the heap, and that the object x returned
satisfies the predicate Enum IsElt h1 x.

The predicate Enum is shown at line 6. It is parameterized by
a predicate p that applies to each of the elements in the collec-
tion. Enumerable collections are objects that have a function-typed
"Next" field which does not mutate the heap. The function either
returns Undef (if the collection is exhausted), or returns a value sat-
isfying the predicate p h’ x. As with other functions, "Next" expects
its this pointer to be the enclosing collection.

Finally, to connect these specifications of the DOM to the pro-
gram itself, we type the program in an initial heap h0 satisfying
the InitialHeap h0 predicate overleaf, which states that a document
object is reachable from the global object.

val global : dyn
type InitialHeap h0 = TypeOf global = object ∧ ...
∧ HasField h0 global "document"
∧ TypeOf (SelField h0 global "document")=object
∧ DocTyping h0 (SelField h0 global "document")

5.2 Facepalm
Our next example is Facepalm, an extension that helps build a
user’s address book by automatically recording the contact infor-
mation of a user’s friends as they browse Facebook. The verifica-
tion time of Facepalm was dominated by the time spent in Z3. Our
query compiler asked about 1,300 Z3 queries, and required pro-
ducing models to resolve 27 function calls. Gatekeeper was able to
successfully provide us with a hint 11 times, but the remaining 16
times we fell back on Z3’s model finding feature, which dominated
the Z3 time—so, a reduction in the number of queries that require
producing models (via better hints) is likely to reduce the verifica-
tion time substantially. We expect better stubs for the DOM when
configuring Gatekeeper to help.

1 function getPath(root, p) {
2 var cur=root; var path=p;
3 while(path !== undefined ∧ //needs loop invariant
4 cur !== undefined) {
5 cur = cur.getChild(path.hd); //needs a hint
6 path = path.tl; }
7 return cur; }
8 function start() {
9 var friendName, href;

10 if (document.domain === ’facebook.com’) {
11 friendName = findName();
12 href = findWebsite();
13 if (href) {
14 console.log("Website on " + href);
15 console.log("Name is " + friendName);
16 saveWebsite(friendName, href); }}}

The main function of Facepalm is shown above (start at line 8).
At a high level, this extension checks to see if the page currently
being viewed is a Facebook page (line 10). If the check succeeds,
it traverses the DOM structure of the page looking for a specific
fragment that mentions the name of the user’s friend (line 11).

A second traversal finds the friend’s contact and website infor-
mation (line 12). If this information is successfully found, the ex-
tension logs it and saves it to the user’s address book maintained on
a third-party bookmarking service (line 16).

The main interest in verifying Facepalm is in verifying the two
DOM traversals, findName and findWebsite. Both of these involve
while-loops to iterate over the structure of the DOM. They do this
by eventually calling the function getPath, shown at line 1. The
loop in getPath iterates simultaneously over a list (path) of integers
as well as the DOM tree rooted at cur, where the integer in the
list indicates which sub-tree of cur to visit. Function getChild(n)

returns the nth child of an element.
To verify this code, the programmer needs to supply a loop

invariant. The next listing shows the translation (slightly cleaned
up) of getPath to JS? for verification, starting with the signature
of a function get which returns the current heap (useful for stating
invariants).

At lines 3–5, we initialize the two local variables corresponding
to cur and path in the source program. The while-loop is trans-
lated to a call to the while-combinator from §2.1. The first three
arguments to while (at line 8) are the predicate arguments—the first
argument Inv locals h0 is provided by the programmer; the next two
are wild cards () whose instantiation is inferred by F?. The fourth
argument is the thunk representing the loop guard, and the last ar-
gument is a thunk for the loop body.

1 val get: unit→DST heap (λp h. p h h)
2 let getPath this args =
3 let locals = allocObject () in
4 updField locals "cur" (selField args "0");
5 updField locals "path" (selField args "1");
6
7 let h0 = get () in
8 let = while (Inv locals h0)
9 (λ . (not ((selField locals "path") = Undef)) ∧

10 (not ((selField locals "cur") = Undef)))
11 (λ .
12 let ps = allocObject () in
13 let getChild = selField (selField locals "cur") "getChild" in
14 let hd = selField (selField locals "path") "hd" in
15 updField ps "0" hd;
16 updField locals "cur" (apply getChild (selField locals "cur") ps);
17 updField locals "path" (selField (selField locals "path") "tl");
18 ())
19 in selField locals "cur"

The code of the loop guard is straightforward. The body allo-
cates an object ps to pass arguments to the function getChild. The
parameters at the call on line 16 is a singleton integer containing
the head of the list "path". We then update the locals "cur" and
"path" and iterate.

Intuitively, verifying this code for the absence of runtime errors
requires two properties: at each iteration, the "path" local must
either be Undef or contain an integer hd field and also a tl field,
while the "cur" local must contain a DOM element (or be Undef).
We state just this using the loop invariant shown below.

1 (∗ Typing polymorphic lists ∗)
2 type IsObject h o = TypeOf o=object ∧ InDom h o
3 type IsList :: E⇒ heap⇒ dyn⇒ E
4 type ListTyping a h l =
5 (l=Undef ∨
6 (IsObject h l ∧
7 HasField h l "hd" ∧ TypeOf (SelField h l "hd")=a ∧
8 HasField h l "tl" ∧ IsList a h (SelField h l "tl")))
9 assume typing1:∀ a h d.

10 IsList a h d⇐⇒ ListTyping a h d
11 assume trans:∀ a h1 h2 d.
12 (IsList a h1 d ∧
13 (SelField h1 d "hd")=(SelField h2 d "hd") ∧
14 (SelField h1 d "tl")=(SelField h2 d "tl")) =⇒ IsList a h2 d
15 (∗ The loop invariant ∗)
16 type CutIsElt h d = IsObject h d ∧ (IsObject h d =⇒ IsElt h d)
17 type Inv locs h0 h1 =
18 (GetFields h0 global)=(GetFields h1 global) ∧
19 IsObject h1 locs ∧
20 HasField h1 locs "path" ∧
21 HasField h1 locs "cur" ∧
22 IsList int h1 (SelField h1 locs "path") ∧
23 ((SelField h1 locs "cur")=Undef ∨
24 CutIsElt h1 (SelField h1 locs "cur"))

The invariant comes in two parts. First, at lines 2–14 we define
an inductive predicate IsList a h l, which states that in the heap h, the
value l is either Undef or a list of a-typed values. The style of this
inductive specification is similar to the specification of IsElt. The
invariant Inv itself is defined at line 17. The invariant is a ternary
predicate relating an object holding the local variables locs, the
heap h0 at the start of the loop, to a heap h1, which represents the
heap at the beginning of each loop iteration.

The invariant states that: (1) the loop does not mutate the global
object (necessary to verify the code after the loop); (2) the locs
object has fields "path" and "cur"; (3) "path" is a list of integers;
and (4) "cur" is either Undef or a DOM element. Stating and
proving (4) required an additional hint (CutIsElt) for Z3 to first
prove that "cur" is an object and then that it is a DOM element.

Writing such an invariant took considerable manual effort. This
is unsurprising—verifying loops in a more well-behaved language,
say, C#, also requires writing invariants, although, of course, many
simple invariants in C# can be stated using just its type system.

With more experience, we hope to discover JavaScript idioms
that make writing loop invariants easier, and further, to apply ideas
ranging from abstract interpretation to interpolants to automatically
infer these invariants.

5.3 Typograf
Our final example is Typograf, an extension that formats text a
user enters in a form. When Typograf receives a request to capture
the text, it calls captureText, which calls the callback function
in the request (line 3). At line 9, Typograf registers listener,
which calls captureText, as an event handler with the Chrome
extension framework, by calling the function addListener. We
verified Typograf for the absence of runtime errors. We show a
simplified fragment of its code below.

1 function captureText(elt, callback) {
2 if(elt.tagName===’INPUT’)
3 { callback({text:elt.value}); }
4 }
5 function listener(request, callback) {
6 if (request.command === ’captureText’) {
7 captureText(document.activeElement, callback);
8 }}
9 chromeExtensionOnRequest.addListener(listener);

Verifying this extension requires providing a specification for
addListener, a third-order function—it receives a second-order
function (listener) as an argument. As the example below shows,
our verification methodology works naturally at higher order, and
the same methodology can be used to write specifications for func-
tions of an arbitrary order.

1 type ChromeTyping h chrome =
2 IsObject h chrome ∧
3 HasField h chrome "addListener" ∧
4 TypeOf (SelField h chrome "addListener")) =
5 AsE (λargs this post h’.
6 (∃ wp. TypeOf (SelField h’ args "0") = AsE wp ∧
7 (∀ args’ h’’.
8 (not (InDom h’ (Loc args)) ∧
9 h’’ = Alloc h’ args’ ∧

10 IsObject h’’ args’ ∧ HasField h’’ args’ "0" ∧
11 HasField h’’ args’ "1" ∧
12 IsObject h’’ (SelField h’’ args’ "0") ∧
13 HasField h’’ (SelField h’’ args’ "0") "command" ∧
14 TypeOf (SelField h’’ args’ "1") =
15 AsE (λ postcb hcb. postcb Undef hcb))
16 =⇒ wp args’ Undef post h’’)))

Since we do not yet model asynchrony, we require a sequential
verification harness. However, (in contrast with HoverMagnifier),
we show how instead of writing driver code to include a call to
listener, we give a specification to addListener that, in effect,
treats it as a function that immediately calls the function it receives
as an argument. Using more realistic drivers is future work.

The listing above shows our (partial) specification of the
Chrome API. It states that Chrome contains an "addListener"

function, which (at line 6) expects a function as its first argument,
i.e., listener, in our example). The specification states that it calls
listener immediately in a heap h’’ that differs from the input heap
in that it contains a new object args’ (line 9). This arguments object
args’ itself, in its zeroth field, contains an object with a "command"

field; and in its first field, contains another function, the callback
passed to listener. The callback in this case is very simple—it is
the constant Undef function—but clearly, it could be given a more
elaborate specification.

6. Related work
Our verification methodology is connected to a long line of litera-
ture of Hoare logic and dependently typed programming languages.
In addition to the connections already discussed, our methodol-
ogy is related to the characteristic formulae of Charguéraud (2011).
These formulae represent programs in higher-order logic, such that
two programs are equivalent if and only if their characteristic for-
mulae are logically equivalent. Chargueraud shows how to compute
a characteristic formula and manipulate it interactively in a theo-
rem prover. In contrast, our predicate transformers are designed to
be provable using an automated first-order theorem prover.

Also related is work on F? and related languages. Borgström
et al. (2009) present an application of the Hoare monad within F7,
a language subsumed by F?. Borgstrom et al. (2011) use substruc-
tural state on top of a Hoare-like monad to model local state. Bhar-
gavan et al. (2010) adopt syntactic conventions to verify higher-
order programs in a language with only first-order refinement types.
However, none attempts the combination of type inference, higher-
orderness, and state.

Fournet et al. (2013) use our JSPrims library to prove a compiler
from F* to JavaScript fully abstract. A key part of their proof
methodology involves the use of the Dijkstra monad to state and
prove invariants of the translation. As such, their work constitutes
separate validation of the expressiveness of the Dijkstra monad and
the effectiveness of our verification methodology.

Another line of work on verifying higher-order programs is via
higher-order model checking (Kobayashi et al. 2011) or via liquid
types (Rondon et al. 2008). These approaches aim to be automated
by discovering invariants. However, these systems generally do not
handle state. Combining model checking or abstract interpretation
based approaches with our work is likely to pay dividends, particu-
larly in the inference of invariants.

Our case study of JavaScript verification is related to work
that equips dynamic languages with static typing, starting perhaps
with Cartwright (1976). More recently, Henglein and Rehof (1995)
defined a translation from Scheme to ML by encoding Scheme
terms using the algebraic ML type dynamic. They were able to stat-
ically discover certain kinds of runtime errors in Scheme programs
via their translation to ML. Our JS2JS? translation makes use of a
similar translation (combined with λ JS). Because of the richness of
our target language, we are able to verify programs in a much more
precise (and only semi-automated) manner. Besides, we need not
stop at simply proving runtime safety—our methodology enables
proofs of functional correctness.

There are several recent systems for dynamic typing based on
dependent typing. Dminor (Bierman et al. 2010) provides seman-
tic subtyping for a first-order dynamically typed language. Tobin-
Hochstadt and Felleisen (2010) provide refinement types for a pure
subset of Scheme. System D (Chugh et al. 2012b) is a refinement
type system for a pure higher-order language with dictionary-based
objects. Our type dyn bears some resemblance to these in that the
refinement formulas speak about a typing property. However, none
of these prior systems gives stateful refinements to functions, which
prevents them from handling both higher-order functions and mu-
table state, as we do. Chugh et al. (2012a) extends System D to
provide a type system for JavaScript. They rely on explicit type an-
notations, and do not provide type inference or soundness of the
type system.

Gardner et al. (2012) provide an axiomatic semantics for
JavaScript based on separation logic. Their semantics enables pre-
cise reasoning about first-order, eval-free JavaScript programs,
including those that explicitly manipulate scope objects and pro-
totype chains. Technically, supporting this idiom is possible in our
system with a richer heap model. However, automated proving for
such complex idioms is still hard. Indeed, at present, Gardner et

al. provide only pencil and paper proofs about small, first-order
JavaScript programs. Nevertheless, a potential direction for future
work is to embed a subset of Gardner et al’s separation logic style
within F? for JavaScript verification. Gardner et al. (2008) show
how to write specifications and reason about the DOM using con-
text logic. Our specification of the DOM, in contrast, uses classical
logic, and is not nearly as amenable to modular reasoning about the
DOM, which has many complex aliasing patterns layered on top of
a basic n-ary tree data structure. Understanding how to better struc-
ture our specifications of the DOM, perhaps based on the insights
of Gardner et al., is another line of future work.

Many tools for automated analyses of various JavaScript sub-
sets have also been constructed. We have already mentioned Gate-
keeper, a pointer analysis for JavaScript used by JS2JS?. The CFA2
analysis (Vardoulakis and Shivers 2011) has been implemented in
the Doctor JS tool to recover information about the call structure
of a JavaScript program. Our method of reasoning about JavaScript
programs by extracting heap models in Z3 can also be seen as a pre-
cise control flow analysis. As discussed previously, there is ample
opportunity to improve our tool to consume the results of a source-
level control-flow analysis as hints to our solver.

Jensen et al. (2009) build a whole-program abstract interpreta-
tion to recover more precise type information of JavaScript pro-
grams in order to statically find program errors. The goals are simi-
lar to our JavaScript verification, but our modular approach does
not rely on complete program analysis. They assume relatively
small, complete programs while our approach allows for modular
verification of portions of a program.

7. Conclusions
Structuring specifications for higher order, stateful programs in the
style of the Dijkstra monad has a number of benefits. As we have
argued, it lends itself naturally to type inference, the VCs it com-
putes can be handled by an SMT solver, and it is flexible enough
to accommodate various language disciplines (ranging from dy-
namic typing, local state, and higher order stores, to exceptions and
monotonic state). Indeed, the basic methodology makes very few
assumptions about the underlying monad, allowing our tools to be
repurposed for other verification tasks—our initial experience com-
bining the Dijkstra monad with an information flow monad is illus-
trative. Going further in this direction, we conjecture that adapting
existing monads for functional reactivity to the Dijkstra-style is a
natural way for handling asynchrony within our framework.

Using our JavaScript verification tool chain we have shown
that with the right abstractions for reasoning about higher-order,
dynamically typed stores, automated program verification tools
are within reach for JavaScript. Despite some limitations, ours is
the first tool to enable sound, precise, semi-automated, modular
verification for a sizeable subset of JavaScript, including its higher-
order and stateful features.

References
M. Barnett, R. DeLine, M. Fahndrich, K. R. M. Leino, and W. Schulte.

Verification of object-oriented programs with invariants. JOT, 3, 2004.

K. Bhargavan, C. Fournet, and N. Guts. Typechecking higher-order security
libraries. In APLAS, pages 47–62, 2010.

G. M. Bierman, A. D. Gordon, C. Hriţcu, and D. Langworthy. Semantic
subtyping with an SMT solver. In ICFP, 2010.

J. Borgström, A. Gordon, and R. Pucella. Roles, stacks, histories: A triple
for Hoare. Technical Report TR-2009-97, Microsoft Research, 2009.

J. Borgstrom, J. Chen, and N. Swamy. Verifying stateful programs with
substructural state and hoare types. In PLPV, Jan. 2011.

R. Cartwright. A Practical Formal Semantic Definition and Verification
System for TYPED LISP. Garland Publishing, New York, 1976.

R. Cartwright and M. Fagan. Soft typing. In PLDI, 1991.
A. Charguéraud. Characteristic formulae for the verification of imperative

programs. In ICFP, 2011.
J. Chen, R. Chugh, and N. Swamy. Type-preserving compilation of end-to-

end verification of security enforcement. In PLDI, 2010.
R. Chugh, D. Herman, and R. Jhala. Dependent types for JavaScript. In

OOPSLA, 2012a.
R. Chugh, P. M. Rondon, and R. Jhala. Nested refinements: a logic for duck

typing. In POPL, 2012b.
D. Crockford. JavaScript: The Good Parts. O’Reilly Media Inc., 2008.
L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.
E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation

of programs. Commun. ACM, 18:453–457, August 1975.
J.-C. Filliâtre and C. Marché. The why/krakatoa/caduceus platform for

deductive program verification. In CAV, pages 173–177, 2007.
C. Fournet, N. Swamy, J. Chen, P. Evariste-Dagand, P.-Y. Strub, and

B. Livshits. Fully abstract compilation to JavaScript. In POPL, 2013.
P. A. Gardner, G. D. Smith, M. J. Wheelhouse, and U. D. Zarfaty. Local

Hoare reasoning about DOM. In PODS, 2008.
P. A. Gardner, S. Maffeis, and G. D. Smith. Towards a program logic for

Javascript. In POPL, 2012.
S. Guarnieri and B. Livshits. Gatekeeper: Mostly static enforcement of

security and reliability policies for JavaScript code. In USENIX Security,
2009.

A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript. In
ECOOP, 2010.

A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Verified security for
browser extensions. In IEEE Symposium on Security and Privacy, 2011.

F. Henglein. Dynamic typing: syntax and proof theory. Science of Computer
Programming, 22:197–230, 1994.

F. Henglein and J. Rehof. Safe polymorphic type inference for Scheme:
Translating Scheme to ML. In FPCA, pages 192–203, 1995.

S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for JavaScript. In
SAS, pages 238–255, 2009.

N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and CEGAR for
higher-order model checking. In PLDI, pages 222–233, 2011.

K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In LPAR (Dakar), pages 348–370, 2010.

K. R. M. Leino and P. Rümmer. A polymorphic intermediate verification
language: Design and logical encoding. In TACAS, 2010.

J. McCarthy. Towards a mathematical science of computation. In IFIP
Congress, pages 21–28, 1962.

A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract predicates
and mutable adts in hoare type theory. In ESOP, pages 189–204, 2007.

A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot:
dependent types for imperative programs. In ICFP, 2008a.

A. Nanevski, J. G. Morrisett, and L. Birkedal. Hoare type theory, polymor-
phism and separation. J. Funct. Program., 18(5-6):865–911, 2008b.

P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information
hiding. In POPL, 2004.

M. Parkinson and G. Bierman. Separation logic and abstraction. In POPL,
2005.

P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI, 2008.
N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.

Secure distributed programming with value-dependent types. In ICFP,
2011a.

N. Swamy, N. Guts, D. Leijen, and M. Hicks. Lightweight monadic
programming in ML. In ICFP, 2011b.

S. Tobin-Hochstadt and M. Felleisen. Logical types for untyped languages.
In ICFP, 2010.

D. Vardoulakis and O. Shivers. CFA2: a Context-Free Approach to Control-
Flow Analysis. Logical Methods in Computer Science, 7(2:3), 2011.

