
Diesel: Applying Privilege Separation to Database Access

Adrienne Porter Felt
UC Berkeley

apf@cs.berkeley.edu

Matthew Finifter
UC Berkeley

finifter@cs.berkeley.edu

Joel Weinberger
UC Berkeley

jww@cs.berkeley.edu
David Wagner

UC Berkeley
daw@cs.berkeley.edu

ABSTRACT
Database-backed applications typically grant complete data-
base access to every part of the application. In this scenario,
a flaw in one module can expose data that the module never
uses for legitimate purposes. Drawing parallels to traditional
privilege separation, we argue that database data should be
subject to limitations such that each section of code receives
access to only the data it needs. We call this data separation.
Data separation defends against SQL-based errors including
buggy queries and SQL injection attacks and facilitates code
review, since a module’s policy makes the extent of its data-
base access explicit to programmers and code reviewers. We
construct a system called Diesel, which implements data sep-
aration by intercepting database queries and applying mod-
ules’ restrictions to the queries. We evaluate Diesel on three
widely-used applications: Drupal, JForum, and WordPress.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—
Security, integrity, and protection; D.2.11 [Software Engi-
neering]: Software Architectures

General Terms
Security, Reliability

Keywords
data separation, privilege separation

1. INTRODUCTION
The principle of least privilege states that each principal

should receive the privileges needed to perform its intended
task and nothing more. Following this principle limits the
scope of a bug or malicious attack and is commonly regarded
as a good security and software engineering practice [26]. A
privilege-separated application applies the principle of least
privilege internally, decomposing the program into modules

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AsiaCCS ’11 Hong Kong
Copyright 2011 ACM 978-1-4503-0564-8/11/03 ...$10.00.

so that each module receives only the privileges it needs
[24]. This provides error containment: a bug can leak only
the privileges of the module that contains it, even if the
application as a whole is highly privileged.

We propose applying privilege separation to data access
within database-backed applications, which we refer to as
data separation. With data separation, each module receives
access to only the data needed for its intended task. A data-
separated module receives a restricted connection instead of
a regular database connection, and a policy limits the set of
operations allowed over the module’s restricted connection.
A software developer can limit each module to the data re-
quired by that module’s functionality. An application-side
data separation framework provides a policy enforcement
mechanism. We value data separation for the same reasons
we value traditional privilege separation:

• Additional line of defense for bugs. If a bug is
present in a database-facing module, damage is limited
to the set of operations the module can perform. This
means that a bug (e.g., a SQL injection vulnerability)
can read or corrupt only the parts of the database that
are accessible to that module.

• Simpler code review. Data separation aids code
review. The reviewer can determine the potential im-
pact of a bug in any given module, which makes it
possible to devote extra attention to modules whose
failures could endanger the integrity or confidentiality
of critical data.

Traditional database user access control and data sepa-
ration are complementary. Database access control limits
human users’ privileges, whereas data separation limits the
data accessible to code modules. Data separation mitigates
attacks in which a user is tricked into attacking her own
data. For example, a cross-site request forgery attack could
prompt a user’s browser to submit a form with a SQL injec-
tion attack that deletes the user’s data. A second-order SQL
injection attack [22] or a combination cross-site scripting and
SQL injection attack could similarly damage a user’s data
without her knowledge. User-based database access control
would allow these attacks, since the user issuing the query
has the required privileges. However, data separation limits
the extent of these attacks to the data used by the vulnerable
module. Similarly, data separation can enhance reliability.
For example, a calendar display module cannot accidentally
edit billing tables. Modules cannot perform unnecessary op-
erations even if user-based access controls allow the user to
perform those actions through another module.

In practice, database-provided access control is often not
used at all. Most web applications connect to a database
with the same database user for all human users. This com-
mon practice is due to connection pooling, large numbers of
human users, and a lack of database support for row-based
database permissions. Data is particularly endangered in
this scenario. If the application’s logic is wrong or vulner-
able, the entire database is at risk of exposure. Data sep-
aration can limit the extent of such an error in application
logic: a buggy calendar module might leak all users’ calen-
dars, but data separation can prevent it from also leaking
the billing and administrative tables.

We envision our system being particularly useful in the
following scenarios:

• Capability-secure programs. Capability systems
provide a platform in which it is possible to limit and
verify which parts of a program have access to which
resources [19]. Data separation is a way for capability-
secure programs to interact securely with a database.

• Web applications. Web applications typically use
connection pooling [28], wherein the server establishes
a fixed number of connections and reuses them between
instances of the web application. All of the connec-
tions are associated with the same user, which repre-
sents the web application and not the client-side hu-
man user. With our data separation framework, con-
nections from the connection pool can be dynamically
restricted based on the identity of the currently run-
ning module and/or the logged-in user.

• Secure extensibility. Third-party program exten-
sions are usually difficult or impossible to review as
thoroughly as the core program. It is therefore desir-
able to restrict the privileges of the potentially buggy
third-party code. In the case of web applications, data
separation can help protect against vulnerable exten-
sions. For example, one Drupal plugin had a vulner-
ability that could be exploited to obtain the adminis-
trator password of the Drupal-powered web site [12];
data separation could have limited the impact of this
vulnerability.

This paper’s primary contribution is the principle of data
separation. We also design, implement, and evaluate a pro-
totype data separation framework named Diesel. We apply
data separation to three applications.

2. DESIGN
Data separation is a design pattern for limiting the data-

base rights of buggy application modules. We discuss how
existing database access controls can implement data sepa-
ration and the limitations of this approach. Our prototype,
Diesel, supports data separation with an application-side,
proxy-based framework.

2.1 Data Separation
As in standard privilege separation, we define application

modules as logically related units of code (e.g., a class) [24].
With data separation, modules receive restricted connections
— database connections that can access only subsets of the
database, according to their policies. Each module can have
any number of restricted connections, each of which has its

own policy. A data separation framework provides a policy-
setting API and an enforcement mechanism.

The developer creates a small, trusted module known as
the powerbox to manage restricted connections. Within the
powerbox, the developer defines policies, associates them
with connection objects, and distributes the resulting re-
stricted connection objects to the appropriate modules. Poli-
cies restrict access to a subset of the database as a list of
whole tables or table subsets (using database views). The
developer specifies the permissible operations for each table
or sub-table. Data separation benefits from incremental de-
ployability; developers can focus first on modules with the
largest attack surface and then gradually restrict the data-
base access of other modules.

A module can create a pared down (i.e., further-restricted)
version of its restricted connection to share with another
module or a less privileged sub-module. This feature is espe-
cially important for capability-style programming, in which
paring down a capability is a common programming pat-
tern [19]. It also aids incremental deployment.

The data separation framework’s policy enforcement mech-
anism must be resilient to SQL-based attacks that attempt
to circumvent a connection’s policy by sending SQL com-
mands specifically formed to confuse the security mecha-
nisms. We assume the developer is willing to use our system
and not actively trying to subvert it; our threat model does
not include malicious application code. Arbitrary untrusted
code may do many malicious things that we cannot reason-
ably prevent with a tool of this scope. If such security guar-
antees are desired, we suggest the use of a capability-secure
language (see Section 4.1).

2.2 Repurposing User-Based Access Control
In some instances, it may be possible to realize data sepa-

ration with existing user-based database access control mech-
anisms. If an application does not make use of database
users to represent human users or roles, database users can
be used to represent program modules. This is analogous
to the Android security model [6], where the operating sys-
tem repurposes Linux users to represent applications. This
allows permission assignment on a per-module basis, and it
works if one assumes that there is only one human user.

This approach may work in a simple scenario, but there
are a few shortcomings that render this approach not gen-
erally applicable. Consider an application that has m users
and n modules. Enforcing data separation with existing
database access control mechanisms would require creating
nm users, and modifying a user’s permissions or a module’s
permissions would be unwieldy. Additionally, this approach
may be infeasible in an organization in which the applica-
tion developer and the database administrator are not the
same person.

Using database users for data separation also does not
support dynamically paring down restricted connections. In
order to pare down a connection, a module would need to
create a new database user for its submodule. This oper-
ation typically requires the INSERT privilege for the data-
base’s user table, and every module would need this privi-
lege. While this may be acceptable, removing the created
user (e.g., after the module terminates) requires DELETE
privileges on the same table. Giving every module DELETE
privileges on the user table would allow any module to re-
move any other module’s privileges or delete the root user.

2.3 Prototype Framework
We propose an application-side data separation frame-

work, Diesel, that operates orthogonally to database access
control. Database support is not necessary, so database
access control use can continue normally. Diesel has two
components: a policy-setting library and a proxy that in-
terposes on connections in order to enforce policies. When
the powerbox makes a restricted connection, it connects to
a local proxy instead of the database (see Figure 1). The
policy-setting library sends a policy to the proxy as part of
the restricted connection initialization process. The power-
box then distributes the restricted connection to a module.
Statements made over restricted connections are received by
the proxy, which checks them against the associated policies.
Permitted statements are forwarded to the database server
over a single database connection (or over one of many iden-
tical connections for load balancing). The powerbox may
retain a powerful connection for itself by refraining from
setting a policy on its own connection.

Restricted connections do not map one-to-one to network
database connections. Instead, restricted connections within
an application are derived from a single shared database con-
nection. Applying data separation to an application does
not increase the number of network connections to the data-
base. Like full-fledged database connections, restricted con-
nections are associated with a database user. SQL com-
mands are subject to both the data separation policy restric-
tions (as enforced by the application-side data separation
framework) and database user access rights (as enforced by
the database). All restricted connections derived from the
same database connection share the same database user.

Our proxy-based architecture is designed for reuse across
different programming languages and frameworks. The pol-
icy enforcement mechanism in the proxy can be used for
any application (regardless of language), and it needs ver-
ification only once. The policy-setting library is language-
specific, but it is trivial; all of the complexity is in the proxy’s
enforcement mechanism. Additionally, this architecture re-
quires very little refactoring to begin using data separation.
Modules can issue SQL commands through the normal data-
base API, without any extra accommodations for data sep-
aration. The powerbox is the only part of the application
that requires modification, in order to define policies and dis-
tribute restricted connections. Section 4 describes our expe-
rience in refactoring three existing applications in different
languages (PHP and Java) to work with our prototype.

This architecture incurs overhead when it proxies packets
(e.g., when it passes a result set from the database to the ap-
plication) and examines SQL statements. Some small cost is
also added by having multiple connections open to the proxy
on the application side, but running the proxy on the same
machine as the application mitigates this cost. A remote
proxy would add network overhead because it would require
multiple TCP connections across the network to the proxy;
with a local proxy, the cost is low because the connections
are local TCP connections or pipes.

Alternate Architectures.
Other application-side policy enforcement mechanisms are

possible as alternatives to our proxy-based prototype. One
possibility is to modify the database API (e.g., the Java
JDBC driver) to accept policies and interpose on queries.
Another option is to wrap the database API with new pro-

powerbox

module 1

module 2

proxy database

Application

Figure 1: Diesel’s architecture. Each module has
its own connection object. The powerbox’s connec-
tion has no data separation policy; it is a regular
connection to the database. The powerbox set re-
strictive policies on the connections for modules 1
and 2. The proxy multiplexes the connections, so
only one connection goes to the database.

cedures that perform policy enforcement. Either way, the
entire framework would reside in a local library and there
would be no need for a proxy. Both of these options remove
the overhead of a proxy but require a new implementation of
the policy enforcement code for each language and database
API. Depending on the language, these alternative archi-
tectures could require application refactoring or a custom
interpreter build. Despite these extra development costs,
an implementation without a proxy might be preferable for
a performance-critical application. We chose a proxy-based
architecture for our prototype so that we could make it avail-
able for use with existing applications in multiple languages.

3. IMPLEMENTATION
We provide Diesel policy libraries for Java, PHP, and

Python applications (Section 3.1). The policy library is the
interface between the data separation framework and the
developer. The proxy (Section 3.2) is responsible for policy
enforcement and represents the majority of the complexity
of our system.

3.1 Policy Library
Developers interact with Diesel through a policy library.

The policy library is an API for managing restricted connec-
tions and their policies. Each language and database API
needs its own implementation of the policy library, and we
built three: Java JDBC, PHP mysqli/mysql, and Python
MySQLdb. The libraries are small (fewer than 170 lines of
code each) and differ only by the semantics of the imple-
mentation language. Using a policy library (e.g., the Java
library in Figure 2), a developer can define a policy, use
policies to restrict connections, and pare down connections.

Defining a Policy.
Policies specify what operations can be performed on the

database. The operations available in our prototype are SE-
LECT, UPDATE, DELETE, and INSERT. Developers can
grant privileges for entire tables or table subsets. We im-
plement table subsets using database views. A view can be
thought of as a “virtual table”: it is the result of a SELECT
query run over tables or other views. A developer provides
the defineTableSubset method with the desired view name

public class DieselPolicy {
public void grantTablePermissions(String name, Permission... p) {...}
public void defineTableSubset(String name, String queryDef, Permission... p) {...}
public void applyPolicy(Connection conn) {...}
public Connection pareDown(Connection conn) {...}

}

Figure 2: The DieselPolicy class from the Java JDBC policy library. Slightly simplified for display.

(a label), the SELECT statement that defines the view, and
the permissions it wishes to associate with the view. For ex-
ample, consider a policy that limits a module to two columns
of a table Users. The developer would use defineTableSub-
set to map the label Users to a view defined by the query
SELECT name, email FROM Users. When the module asks
for the table Users, it will receive a view (labelled Users)
that includes only names and e-mail addresses.

Restricting a Connection.
In order to create a restricted connection, the developer

needs to: (1) create a policy, (2) create a connection to the
proxy, and (3) apply the policy to the connection. We ac-
complish the last step by passing a connection object to a
policy’s applyPolicy method. The library sends the pol-
icy information over the connection to the proxy, followed
by a START command. Policy enforcement begins when the
START command is received, making the restricted connec-
tion ready for use by a module. At this point, the policy
cannot be removed from the restricted connection; that is,
no SQL query can escalate the connection’s privileges.

Paring Down a Connection.
A module might need to further restrict a restricted con-

nection. We provide a pareDown method that will return
a new restricted connection object with additional restric-
tions added to it. The original connection can still be used
as before, with its original policy. The new, pared down
connection must have a subset of the original connection’s
privileges (or else the proxy will reject it).

3.2 Proxy
The proxy runs on the same machine as the application.

When it is initialized, the proxy connects to the database
server with the appropriate credentials (i.e., those that the
application normally connects with) and begins listening
for incoming connections. The proxy is responsible for ac-
cepting commands from the policy library, checking state-
ments against connections’ policies, and multiplexing re-
stricted connections over the database connection(s).

We use MySQL Proxy 0.7.2 [20], an open source proxy for
MySQL databases, with a plugin to support our framework.
The core proxy informs our plugin of connection events like
receipt of a new connection or packet. The plugin can insert
packets into the queue, authenticate or refuse incoming con-
nections, and relay, edit, or discard incoming packets. Our
plugin includes code from the funnel plugin [17] to handle
multiplexing.

Policy Enforcement.
The proxy inspects all statements from restricted connec-

tions. For a statement to pass through the proxy to the
database, the restricted connection must have permission to
perform the statement’s operation on all tables listed in the
statement. To enforce this, we extract the operation and ta-

ble names from each statement. We use the MySQL Proxy
tokenizer and our own parser written in Lua.

We do not need to fully parse SQL statements because
they are highly structured. Table names can occur only in
well-defined locations. For example, table names in a SE-
LECT statement can appear only between a FROM token
and one of ten end tokens. The resulting table reference
list is also simple; any literal that does not appear between
parentheses is a table name. Our parser also handles sub-
queries. MySQL allows for one level of subquerying, and
subqueries must be SELECT statements. Only SELECT
privileges are required for a subquery’s tables; the outer
statement type does not need to be considered.

Multiplexing Connections.
Restricted connections are typically multiplexed across a

single database connection. If the application desires load
balancing, the proxy can open connections to different (but
identical) database servers and issue statements over the set
of connections. If the application uses connection pooling,
the proxy can open and maintain multiple connections to a
single database server. The proxy then load balances across
its real connection pool, and the application’s connection
pool maintains and distributes restricted connections; our
JForum example in Section 4.2 illustrates this. We use code
from the funnel plugin [17] to perform multiplexing and
load balancing.

Restricted connections are not entirely isolated from one
another because they share one underlying connection (or
set of connections). MySQL database connections have state
associated with them. Potential approaches to handling
connection-wide state include virtualizing connection-wide
state for each restricted connection, disabling all functional-
ity that uses connection-wide state, or letting the powerbox
set policies on connection-wide state. Virtualization makes
a restricted connection a first class object, capable of ev-
erything a normal connection is capable of except when its
actions exceed what its policy allows. With the latter two
options, restricted connections are not first class objects. It
is possible to virtualize state [5], but our current prototype
allows only unrestricted connections to change settings that
affect connection-wide state.

4. APPLICATIONS
In this section, we discuss the use of data separation in

real applications. Our target use case is a program with
a small powerbox and functionality that can be separated
into relatively independent modules. Capability-secure ap-
plications are well-suited to this use case (Section 4.1). We
present three web applications and discuss how data sepa-
ration might be applied to them to improve their security.
To demonstrate the benefits of data separation, we retrofit
them with Diesel.

4.1 Capabilities
For threat models that include code injection attacks or

malicious extension code, we suggest the use of a capabil-
ity language such as Joe-E [18]. It is difficult to defend
against malicious modules (e.g., third-party extensions) in
non-capability systems. In a non-capability setting, there is
no guarantee that a module cannot obtain a powerful con-
nection even if it is intended to have only a restricted con-
nection. For example, a malicious extension might be able
to gain access to an unrestricted connection by accessing a
global variable. This makes it difficult or impossible to make
guarantees about the access that untrusted extensions have
to the database in a non-capability setting.

In contrast, capability systems make it possible to limit
and verify which parts of a program have access to which re-
sources [19]. In particular, capability systems give us a way
to know for sure that we have limited a module’s database
access. Capability-safe languages ensure that a module can
access a resource (e.g., a database connection) only if the
module has a reference to the resource. Thus, if a module
has a reference only to a restricted connection, then we know
that the module cannot circumvent its policy by accessing
a different connection object. If all untrusted code is writ-
ten in a capability-safe language, then the architecture can
defend against malicious code.

Although capabilities have been extensively explored [16,
14, 27, 19], past research to our knowledge has not dealt with
the problem of interacting with a database in a capability-
friendly manner. Using one capability to represent the en-
tire database violates the principle of least privilege, which
capability systems are intended to support; data separation
solves this problem. Consequently, database-facing capability-
based programs can benefit from the use of data separa-
tion. For example, Krishnamurthy et al. [13] implemented a
capability-secure web application framework for Joe-E, and
they used it to build a webmail service. The capability-
secure language enables them to verify an important secu-
rity property: no user Mallory can access another user Al-
ice’s mailbox without knowing Alice’s password. Each user’s
mailbox has its own file system directory on the server, and
a capability to a directory provides access only to children of
that directory. However, a database might be more appro-
priate than the file system; with data separation techniques,
using a database in a capability setting becomes possible.

4.2 Retrofitting JForum
JForum is a Java message board system that runs several

forums with more than 30,000 users each [10]. It is archi-
tected as a set of distinct modules, making it a good target
for data separation. JForum is an example of a web applica-
tion that uses connection pooling. We retrofit JForum 2.1.8
to work with Diesel. Figure 3 shows how many lines of code
in JForum had to be edited for the implementation.

As an example of data separation, consider JForum’s posts
module. It is the most privileged module, requiring full
access to the database tables for forum topics, posts, user
votes, etc. Despite its broad privileges, we were still able to
restrict its access to sensitive tables like the jforum_users

table. Thus, we greatly limit the potential damage that a
bug in the posts module could cause. Unfortunately, JFo-
rum does not release vulnerability reports, so we were unable
to test our modified implementation on real vulnerabilities.

modifications policy
JForum 211 162
Drupal 41 1
WordPress 46 6

Figure 3: Modifications shows how many lines of
code were added/altered. The policy column shows
how many lines of policy code were used to data sep-
arate all JForum modules, one Drupal plugin, and
one WordPress plugin.

4.3 Retrofitting Drupal and WordPress
Drupal and WordPress are popular open source content

management systems written in PHP. In both platforms, the
core program provides functionality for creating and admin-
istering websites, and third-party plugins provide additional
specialized features. While the core platforms are large
projects with security teams, many of the plugins are small
projects with less rigorous security reviews. We retrofit
Drupal and WordPress with Diesel to limit the database
privileges of plugins. Drupal and WordPress could require
plugin developers to package a configuration file with their
software to identify its required database privileges. This
would lessen the impact of a bug in a plugin. In many cases,
a plugin may need access only to the tables it creates.

Figure 3 shows how many lines of code were edited or
added to refactor Drupal and WordPress. As described be-
low, we wrote a policy for one plugin for each platform; addi-
tional plugins can provide policy files that would be honored
without any further code modifications.

Drupal Vulnerability.
A flaw in the Brilliant Gallery plugin for Drupal enables

an attacker to retrieve the administrative password for the
Drupal-powered website [12]. This piece of data is never
used by the plugin, so there is no reason for the plugin to
have access to it. We refactor the vulnerable versions of
Drupal and Brilliant Gallery (versions 5.10 and 5.x-4.1, re-
spectively) to use Diesel. We wrote a one-line policy file for
the Brilliant Gallery module that specifies that it needs full
access to the brilliant_gallery_checklist table, which is
the only table it creates. It receives no other database ac-
cess. With this policy in place, the SQL injection vulnerabil-
ity post [12] affects only the brilliant_gallery_checklist

table, so it is no longer a critical vulnerability that can ex-
pose administrative credentials.

WordPress Vulnerability.
The WP-Forum plugin adds a forum to a WordPress-

powered website. A flaw in this plugin allows an attacker to
access the WordPress user account database, which includes
administrative credentials [15]. We refactor WP-Forum 2.3
and WordPress 2.7 to use Diesel. We wrote a policy file for
WP-Forum stating that it needs full access to the six tables
it creates. Due to our default-deny policy, the restricted ver-
sion of WP-Forum no longer has access to sensitive Word-
Press databases. The proof of concept SQL injection at-
tack [15] is no longer a critical vulnerability; it can now only
affect WP-Forum’s database tables.

5. RELATED WORK

User-Based Access Control.
User-based database access control has been studied a

great deal [7, 21, 25, 11]. This body of work aims to allow
fine-grained access control for different database users. Our
work allows fine-grained access control for different modules
of a single program, which may be acting on behalf of one
or many users.

CLAMP and Nemesis focus on isolating the users of a web
application from one another. In CLAMP, database access
rights of the application are limited based on the identity
of the user currently logged in via SSL [23]. Strong sepa-
ration is put in place to disallow one user from accessing
another user’s data. Nemesis similarly addresses the prob-
lem of authentication and access control attacks in web ap-
plications [3]. Instead of isolating users from one another,
data separation aims to limit the access rights of modules
within a program. This includes not only user-accessible
data, but also data that is stored for the application’s own
purposes. Additionally, data separation is applicable to all
applications that use databases, not just web applications,
which are the focus of CLAMP and Nemesis. Our goals are
complementary to those of CLAMP and Nemesis.

Redundant Authentication.
The goal of redundant authentication [1] is to reduce the

damage that a compromised application server can do to the
database. With redundant authentication, every database
request issued by an application server must be accompanied
by a time-stamped authentication token verifying the user’s
credentials. A proxy checks the credentials and forwards
commands to the database only if the credentials belong to
a recently logged-in user. Their attacker is more powerful
than ours; we consider only the case of a secure application
server running a buggy application. However, data separa-
tion offers finer-grained privileges than redundant authen-
tication. With data separation, database access rights are
restricted by both the identity of the user and the part of
the application that issued the command. In addition to
shielding the database, data separation also facilitates code
review. From an implementation standpoint, data separa-
tion does not necessarily require a proxy; it can be imple-
mented in a driver or with wrappers, which is preferable for
performance-conscious applications.

SQL Injection Defenses.
SQL injection is a well-studied problem with many work-

able solutions [9, 29, 2, 8]. While use of our system will
mitigate or eliminate the damage caused by many SQL in-
jection vulnerabilities, we emphasize that this is not its only
goal. Our goal is broader: to encourage each module of a
program to be explicit about the database access it needs to
get its job done. This will help programmers and code re-
viewers better understand the extent to which a given mod-
ule affects and/or depends on particular sets of data in a
database. Data separation protects against a large class of
bugs, including but not limited to SQL injection vulnerabil-
ities. For example, web application logic vulnerabilities [4]
do not stem from input validation errors.

6. CONCLUSION
We propose data separation, the application of privilege

separation to database access rights. Privilege separation is
a design pattern in which code is separated into functionally
independent modules, and each module is given only mini-
mal privileges. In a database-facing application, this means
that modules should receive only the database access rights
they require. Restricting the database access rights of code
mitigates the effects of SQL injection attacks and other bugs
that could expose data that the code never needed to access
in the first place.

We present a proxy-based architecture for enforcing data
separation on the application side without support from the
database. The proxy intercepts statements over restricted
connections and checks the statements against a module’s
policy. We demonstrate the effectiveness of our prototype,
Diesel, on three popular applications: JForum, Drupal, and
WordPress. We added or modified only 211, 41, and 46
lines of code, respectively, to retrofit these applications with
Diesel. We show how our modifications to Drupal and Word-
Press could have mitigated actual attacks on these systems.

Experience with Diesel is encouraging, because it shows
that data separation can have security benefits. However,
the performance of Diesel leaves considerable room for im-
provement: our measurements show a significant perfor-
mance overhead (up to 73%, depending upon the type of
query), which may not be acceptable in many application
domains. Much of this overhead is due to our use of an alpha
release of a non-commercial proxy, and it may be possible to
significantly improve performance by using an application-
level, non-proxy-based architecture. We hope that these re-
sults will motivate further research on data separation and
efficient support for data separation.

Acknowledgements
We thank Adrian Mettler and the anonymous reviewers for
their helpful feedback on earlier drafts of this work. This
work is partially supported by National Science Foundation
grants CCF-0424422 and CNS-1018924.

References
[1] J. P. Boyer, R. Hasan, L. E. Olson, N. Borisov, C. A.

Gunter, and D. Raila. Improving multi-tier security us-
ing redundant authentication. In CSAW ’07: Proceed-
ings of the 2007 ACM workshop on Computer security
architecture, pages 54–62, New York, NY, USA, 2007.
ACM.

[2] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using
parse tree validation to prevent SQL injection attacks.
In SEM ’05: Proceedings of the 5th international work-
shop on Software engineering and middleware, pages
106–113, New York, NY, USA, 2005. ACM.

[3] M. Dalton, C. Kozyrakis, and N. Zeldovich. Nemesis:
Preventing Authentication & Access Control Vulnera-
bilities in Web Applications. In Proceedings of the 18th
USENIX Security Symposium, Montreal, Canada, Au-
gust 2009.

[4] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna.
Toward Automated Detection of Logic Vulnerabilities
in Web Applications. In USENIX Security, 2010.

[5] A. P. Felt, M. Finifter, J. Weinberger, and D. Wag-
ner. Diesel: Applying privilege separation to data-
base access. Technical Report UCB/EECS-2010-149,
EECS Department, University of California, Berkeley,
Dec 2010.

[6] Google. Android Developers: Security and Per-
missions. http://developer.android.com/guide/

topics/security/security.html.

[7] P. P. Griffiths and B. W. Wade. An authorization mech-
anism for a relational database system. ACM Trans.
Database Syst., 1(3):242–255, 1976.

[8] W. Halfond and A. Orso. AMNESIA: Analysis and
Monitoring for NEutralizing SQL-Injection Attacks.
In Proceedings of the IEEE and ACM International
Conference on Automated Software Engineering (ASE
2005), pages 174–183, Long Beach, CA, USA, Novem-
ber 2005.

[9] W. G. Halfond, J. Viegas, and A. Orso. A Classifi-
cation of SQL-Injection Attacks and Countermeasures.
In Proceedings of the IEEE International Symposium
on Secure Software Engineering, Arlington, VA, USA,
March 2006.

[10] JForum—Powering communities. http://www.jforum.
net.

[11] G. Kabra, R. Ramamurthy, and S. Sudarshan. Redun-
dancy and information leakage in fine-grained access
control. In SIGMOD ’06: Proceedings of the 2006 ACM
SIGMOD international conference on Management of
data, pages 133–144, New York, NY, USA, 2006. ACM.

[12] J. C. K. Keane. [Full-disclosure] Drupal Bril-
liant Gallery module SQL injection vulnerability.
http://www.derkeiler.com/Mailing-Lists/Full-

Disclosure/2008-09/msg00506.html.

[13] A. Krishnamurthy, A. Mettler, and D. Wagner. Fine-
Grained Privilege Separation for Web Applications. In
WWW ’10: Proceedings of the 19th international con-
ference on World Wide Web. ACM, 2010.

[14] C. R. Landau. Security in a secure capability-based
system. SIGOPS Oper. Syst. Rev., 23(4):2–4, 1989.

[15] J. G. Lara. Internet Security Auditors Alert:
WP-Forum ≤ 2.3 SQL Injection vulnerabili-
ties. http://www.securityfocus.com/archive/1/

archive/1/508504/100/0/threaded, 2009.

[16] H. M. Levy. Capability-Based Computer Systems.
Butterworth-Heinemann, Newton, MA, USA, 1984.

[17] N. Loeve. Funnel - A Multiplexer Plugin for MySQL-
Proxy. https://lists.launchpad.net/mysql-proxy-

discuss/msg00030.html.

[18] A. Mettler, D. Wagner, and T. Close. Joe-E: A
Security-Oriented Subset of Java. In Proceedings of the
17th Annual Network and Distributed Systems Security
Symposium (NDSS 2010), 2010.

[19] M. S. Miller. Robust Composition: Towards a Uni-
fied Approach to Access Control and Concurrency Con-
trol. PhD thesis, Johns Hopkins University, Baltimore,
Maryland, USA, May 2006.

[20] MySQL Proxy. http://forge.mysql.com/wiki/

MySQL_Proxy.

[21] L. E. Olson, C. A. Gunter, and P. Madhusudan. A For-
mal Framework for Reflective Database Access Control
Policies. In CCS ’08: Proceedings of the 15th ACM
conference on Computer and Communications Security,
pages 289–298, New York, NY, USA, 2008. ACM.

[22] Oracle. Examples of Second Order SQL Injection At-
tack. http://st-curriculum.oracle.com/tutorial/

SQLInjection/html/lesson1/les01_tm_attacks2.

htm.

[23] B. Parno, J. M. McCune, D. Wendlandt, D. G. Ander-
sen, and A. Perrig. CLAMP: Practical prevention of
large-scale data leaks. In Proc. IEEE Symposium on
Security and Privacy, Oakland, CA, May 2009.

[24] N. Provos, M. Friedl, and P. Honeyman. Preventing
privilege escalation. In SSYM’03: Proceedings of the
12th conference on USENIX Security Symposium, pages
16–16, Berkeley, CA, USA, 2003. USENIX Association.

[25] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Ex-
tending query rewriting techniques for fine-grained ac-
cess control. In SIGMOD ’04: Proceedings of the 2004
ACM SIGMOD international conference on Manage-
ment of data, pages 551–562, New York, NY, USA,
2004. ACM.

[26] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, 1975.

[27] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS:
a fast capability system. In SOSP ’99: Proceedings of
the seventeenth ACM Symposium on Operating Systems
Principles, pages 170–185, New York, NY, USA, 1999.
ACM.

[28] Sun Microsystems, Inc. Connection pooling, 2008.
http://java.sun.com/developer/onlineTraining/

Programming/JDCBook/conpool.html#pool.

[29] S. Thomas and L. Williams. Using Automated Fix Gen-
eration to Secure SQL Statements. In SESS ’07: Pro-
ceedings of the Third International Workshop on Soft-
ware Engineering for Secure Systems, page 9, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

